1
|
Kiuchi K, Shidara H, Iwatani Y, Ogawa H. Motor state changes escape behavior of crickets. iScience 2023; 26:107345. [PMID: 37554465 PMCID: PMC10405261 DOI: 10.1016/j.isci.2023.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/29/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
Animals change their behavior depending on external circumstances, internal factors, and their interactions. Locomotion state is a crucial internal factor that profoundly affects sensory perception and behavior. However, studying the behavioral impacts of locomotion state in free-moving animals has been challenging due to difficulty in reproducing quantitatively identical stimuli in freely moving animals. We utilized a closed-loop controlled servosphere treadmill system, enabling unrestricted confinement and orientation of small animals, and investigated wind-induced escape behavior in freely moving crickets. When stimulated during locomotion, the crickets quickly stopped before initiating escape behavior. Moving crickets exhibited a higher probability of escape response compared to stationary crickets. The threshold for pausing response in moving crickets was also much lower than the escape response threshold. Moving crickets had delayed reaction times for escape and greater variance in movement direction compared to stationary crickets. The locomotion-related response delay may be compensated by an elevated sensitivity to airflow.
Collapse
Affiliation(s)
- Kazuhide Kiuchi
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biochemistry, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Yasushi Iwatani
- Department of Science and Technology, Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
2
|
Lu A, Fukutomi M, Shidara H, Ogawa H. Persistence of auditory modulation of wind-induced escape behavior in crickets. Front Physiol 2023; 14:1153913. [PMID: 37250114 PMCID: PMC10214467 DOI: 10.3389/fphys.2023.1153913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Animals, including insects, change their innate escape behavior triggered by a specific threat stimulus depending on the environmental context to survive adaptively the predators' attack. This indicates that additional inputs from sensory organs of different modalities indicating surrounding conditions could affect the neuronal circuit responsible for the escape behavior. Field crickets, Gryllus bimaculatus, exhibit an oriented running or jumping escape in response to short air puff detected by the abdominal mechanosensory organ called cerci. Crickets also receive a high-frequency acoustic stimulus by their tympanal organs on their frontal legs, which suggests approaching bats as a predator. We have reported that the crickets modulate their wind-elicited escape running in the moving direction when they are exposed to an acoustic stimulus preceded by the air puff. However, it remains unclear how long the effects of auditory inputs indicating surrounding contexts last after the sound is terminated. In this study, we applied a short pulse (200 ms) of 15-kHz pure tone to the crickets in various intervals before the air-puff stimulus. The sound given 200 or 1000 ms before the air puff biased the wind-elicited escape running backward, like the previous studies using the longer and overlapped sound. But the sounds that started 2000 ms before and simultaneously with the air puff had little effect. In addition, the jumping probability was higher only when the delay of air puff to the sound was 1000 ms. These results suggest that the cricket could retain the auditory memory for at least one second and alter the motion choice and direction of the wind-elicited escape behavior.
Collapse
Affiliation(s)
- Anhua Lu
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Matasaburo Fukutomi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
- Department of Biochemistry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Ifere NO, Shidara H, Sato N, Ogawa H. Spatial perception mediated by insect antennal mechanosensory system. J Exp Biol 2022; 225:274502. [PMID: 35072207 PMCID: PMC8920036 DOI: 10.1242/jeb.243276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Animals perceive their surroundings by using various modalities of sensory inputs to guide their locomotion. Nocturnal insects such as crickets use mechanosensory inputs mediated by their antennae to orient in darkness. Spatial information is acquired via voluntary antennal contacts with surrounding objects, but it remains unclear whether the insects modulate behaviors mediated by other sensory organs based on that information. Crickets exhibit escape behavior in response to a short air-puff, which is detected by the abdominal mechanosensory organs called cerci and is perceived as a “predator approach” signal. We placed objects of different shapes at different locations with which the cricket actively made contact using its antenna. We then examined the effects on wind-elicited escape behavior. The crickets changed their movement trajectory in response to nearby objects like walls so that they could avoid collision with these obstacles even during the cercal-mediated behavior. For instance, when a wall was placed in front of the crickets so that it was detected by one antenna, the escape trajectory in response to a stimulus from behind was significantly biased toward the side opposite the wall. Even when the antenna on the free side without the wall was ablated, this collision avoidance was also observed, suggesting that the mechanosensory inputs from one antenna detecting an object edge would be sufficient to perceive the location of obstacle in front. This study demonstrated that crickets were able to use the spatial information acquired with their antennal system to modify their behavior mediated by other sensory organs.
Collapse
Affiliation(s)
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
4
|
Sato N, Shidara H, Ogawa H. Action selection based on multiple-stimulus aspects in wind-elicited escape behavior of crickets. Heliyon 2022; 8:e08800. [PMID: 35111985 PMCID: PMC8790502 DOI: 10.1016/j.heliyon.2022.e08800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022] Open
Abstract
Escape behavior is essential for animals to avoid attacks by predators. In some species, multiple escape responses could be employed. However, it remains unknown what aspects of threat stimuli affect the choice of an escape response. We focused on two distinct escape responses (running and jumping) to short airflow in crickets and examined the effects of multiple stimulus aspects including the angle, velocity, and duration on the choice between these responses. The faster and longer the airflow, the more frequently the crickets jumped. This meant that the choice of an escape response depends on both the velocity and duration of the stimulus and suggests that the neural basis for choosing an escape response includes the integration process of multiple stimulus parameters. In addition, the moving speed and distance changed depending on the stimulus velocity and duration for running but not for jumping. Running away would be more adaptive escape behavior.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
5
|
Lunichkin AM, Zhukovskaya MI. Morpho-Functional Characterization
of Cercal Organs in Crickets. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302101004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Maekawa T, Ohara K, Zhang Y, Fukutomi M, Matsumoto S, Matsumura K, Shidara H, Yamazaki SJ, Fujisawa R, Ide K, Nagaya N, Yamazaki K, Koike S, Miyatake T, Kimura KD, Ogawa H, Takahashi S, Yoda K. Deep learning-assisted comparative analysis of animal trajectories with DeepHL. Nat Commun 2020; 11:5316. [PMID: 33082335 PMCID: PMC7576204 DOI: 10.1038/s41467-020-19105-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/25/2020] [Indexed: 11/09/2022] Open
Abstract
A comparative analysis of animal behavior (e.g., male vs. female groups) has been widely used to elucidate behavior specific to one group since pre-Darwinian times. However, big data generated by new sensing technologies, e.g., GPS, makes it difficult for them to contrast group differences manually. This study introduces DeepHL, a deep learning-assisted platform for the comparative analysis of animal movement data, i.e., trajectories. This software uses a deep neural network based on an attention mechanism to automatically detect segments in trajectories that are characteristic of one group. It then highlights these segments in visualized trajectories, enabling biologists to focus on these segments, and helps them reveal the underlying meaning of the highlighted segments to facilitate formulating new hypotheses. We tested the platform on a variety of trajectories of worms, insects, mice, bears, and seabirds across a scale from millimeters to hundreds of kilometers, revealing new movement features of these animals.
Collapse
Affiliation(s)
- Takuya Maekawa
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan.
| | - Kazuya Ohara
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Yizhe Zhang
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | | | - Sakiko Matsumoto
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Kentarou Matsumura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Hokkaido University, Hokkaido, Japan
| | | | - Ryusuke Fujisawa
- Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Kaoru Ide
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Naohisa Nagaya
- Department of Intelligent Systems, Kyoto Sangyo University, Kyoto, Japan
| | - Koji Yamazaki
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Shinsuke Koike
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takahisa Miyatake
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Koutarou D Kimura
- Graduate School of Science, Osaka University, Osaka, Japan
- Graduate School of Science, Nagoya City University, Nagoya, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Hokkaido University, Hokkaido, Japan
| | - Susumu Takahashi
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| |
Collapse
|
7
|
Sato N, Shidara H, Ogawa H. Trade-off between motor performance and behavioural flexibility in the action selection of cricket escape behaviour. Sci Rep 2019; 9:18112. [PMID: 31792301 PMCID: PMC6889515 DOI: 10.1038/s41598-019-54555-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022] Open
Abstract
To survive a predator’s attack successfully, animals choose appropriate actions from multiple escape responses. The motor performance of escape response governs successful survival, which implies that the action selection in escape behaviour is based on the trade-off between competing behavioural benefits. Thus, quantitative assessment of motor performance will shed light on the biological basis of decision-making. To explore the trade-off underlying the action selection, we focused on two distinct wind-elicited escape responses of crickets, running and jumping. We first hypothesized a trade-off between speed and directional accuracy. This hypothesis was rejected because crickets could control the escape direction in jumping as precisely as in running; further, jumping had advantages with regard to escape speed. Next, we assumed behavioural flexibility, including responsiveness to additional predator’s attacks, as a benefit of running. The double stimulus experiment revealed that crickets running in the first response could respond more frequently to a second stimulus and control the movement direction more precisely compared to when they chose jumping for the first response. These data suggest that not only the motor performance but also the future adaptability of subsequent behaviours are considered as behavioural benefits, which may be used for choosing appropriate escape reactions.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
8
|
Someya M, Ogawa H. Multisensory enhancement of burst activity in an insect auditory neuron. J Neurophysiol 2018; 120:139-148. [PMID: 29641303 DOI: 10.1152/jn.00798.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Detecting predators is crucial for survival. In insects, a few sensory interneurons receiving sensory input from a distinct receptive organ extract specific features informing the animal about approaching predators and mediate avoidance behaviors. Although integration of multiple sensory cues relevant to the predator enhances sensitivity and precision, it has not been established whether the sensory interneurons that act as predator detectors integrate multiple modalities of sensory inputs elicited by predators. Using intracellular recording techniques, we found that the cricket auditory neuron AN2, which is sensitive to the ultrasound-like echolocation calls of bats, responds to airflow stimuli transduced by the cercal organ, a mechanoreceptor in the abdomen. AN2 enhanced spike outputs in response to cross-modal stimuli combining sound with airflow, and the linearity of the summation of multisensory integration depended on the magnitude of the evoked response. The enhanced AN2 activity contained bursts, triggering avoidance behavior. Moreover, cross-modal stimuli elicited larger and longer lasting excitatory postsynaptic potentials (EPSP) than unimodal stimuli, which would result from a sublinear summation of EPSPs evoked respectively by sound or airflow. The persistence of EPSPs was correlated with the occurrence and structure of burst activity. Our findings indicate that AN2 integrates bimodal signals and that multisensory integration rather than unimodal stimulation alone more reliably generates bursting activity. NEW & NOTEWORTHY Crickets detect ultrasound with their tympanum and airflow with their cercal organ and process them as alert signals of predators. These sensory signals are integrated by auditory neuron AN2 in the early stages of sensory processing. Multisensory inputs from different sensory channels enhanced excitatory postsynaptic potentials to facilitate burst firing, which could trigger avoidance steering in flying crickets. Our results highlight the cellular basis of multisensory integration in AN2 and possible effects on escape behavior.
Collapse
Affiliation(s)
- Makoto Someya
- Graduate School of Life Science, Hokkaido University , Sapporo , Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University , Sapporo , Japan
| |
Collapse
|
9
|
Crickets alter wind-elicited escape strategies depending on acoustic context. Sci Rep 2017; 7:15158. [PMID: 29123249 PMCID: PMC5680309 DOI: 10.1038/s41598-017-15276-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023] Open
Abstract
Acoustic signals trigger various behaviours in insects such as courtship or escape from predators. However, it remains unknown whether insects utilize acoustic signals to recognize environmental contexts. The cricket is a prominent model insect for neuroethological studies on acoustic behaviour because female crickets exhibit positive phonotaxis in response to male calling songs, and flying crickets display avoidance behaviour for high-frequency sounds such as echolocation call of bats. The carrier frequency of these sounds is a major factor in determining whether they initiate these acoustic behaviours. Here, we examined the impacts of different frequencies of tone sounds on cercal-mediated escape behaviour, using a 5-kHz tone corresponding to the calling song and a 15-kHz tone serving as a trigger of avoidance behaviours. Neither frequency elicited a response in the standing cricket by itself, but they had different impacts on walking responses to airflow stimuli. While the 15-kHz tone reduced response probability, extended moving distance, and enhanced turn-angle variability, the 5-kHz tone had no effect. Although both frequencies of tones facilitated walking backward, the 15-kHz tone had a larger effect than the 5-kHz tone. These frequency dependencies of behavioural modulation suggest that crickets can recognize acoustic contexts and alter their escape strategy accordingly.
Collapse
|
10
|
Sato N, Shidara H, Ogawa H. Post-molting development of wind-elicited escape behavior in the cricket. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:36-46. [PMID: 29030316 DOI: 10.1016/j.jinsphys.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Arthropods including insects grow through several developmental stages by molting. The abrupt changes in their body size and morphology accompanying the molting are responsible for the developmental changes in behavior. While in holometabolous insects, larval behaviors are transformed into adult-specific behaviors with drastic changes in nervous system during the pupal stage, hemimetabolous insects preserve most innate behaviors whole life long, which allow us to trace the maturation process of preserved behaviors after the changes in body. Wind-elicited escape behavior is one of these behaviors and mediated by cercal system, which is a mechanosensory organ equipped by all stages of nymph in orthopteran insects like crickets. However, the maturation process of the escape behavior after the molt is unclear. In this study, we examined time-series of changes in the wind-elicited escape behavior just after the imaginal molt in the cricket. The locomotor activities are developed over the elapsed time, and matured 24h after the molt. In contrast, a stimulus-angle dependency of moving direction was unchanged over time, meaning that the cercal sensory system detecting airflow direction was workable immediately after the molt, independent from the behavioral maturation. The post-molting development of the wind-elicited behavior was considered to result not simply from maturation of the exoskeleton or musculature because the escape response to heat-shock stimulus did not change after the molt. No effect of a temporal immobilization after the imaginal molt on the maturation of the wind-elicited behavior also implies that the maturation may be innately programmed without experience of locomotion.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
11
|
Rillich J, Stevenson PA. Losing without Fighting - Simple Aversive Stimulation Induces Submissiveness Typical for Social Defeat via the Action of Nitric Oxide, but Only When Preceded by an Aggression Priming Stimulus. Front Behav Neurosci 2017; 11:50. [PMID: 28381994 PMCID: PMC5360729 DOI: 10.3389/fnbeh.2017.00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/03/2017] [Indexed: 11/20/2022] Open
Abstract
Losing a fight (social defeat) induces submissiveness and behavioral depression in many animals, but the mechanisms are unclear. Here we investigate how the social defeat syndrome can be established as a result of experiencing aversive stimuli and the roles of neuromodulators in the process. While biogenic amines and nitric oxide (NO) are associated with reduced aggression in mammals and insects, their specific actions during conflict are unknown. Although the social defeat syndrome normally results from complex interactions, we could induce it in male crickets simply by applying aversive stimuli (AS) in an aggressive context. Aggressive crickets became immediately submissive and behaved like losers after experiencing two brief AS (light wind puffs to the cerci), but only when preceded by a priming stimulus (PS, stroking the antenna with another male antenna). Notably, submissiveness was not induced when the PS preceded the AS by more than 1 min, or when the PS followed the AS, or using a female antenna as the preceding stimulus. These findings suggest that any potentially detrimental stimulus can acquire the attribute of an aversive agonistic signal when experienced in an aggressive context. Crickets, it seems, need only to evaluate their net sensory impact rather than the qualities of a variety of complex agonistic signals. Selective drug treatments revealed that NO, but not serotonin, dopamine or octopamine, is necessary to establish the submissive status following pairing of the priming and aversive stimuli. Moreover, treatment with an NO donor also induced the social defeat syndrome, but only when combined with the PS. This confirms our hypothesis that aversive agonistic experiences accumulated by crickets during fighting invoke social defeat via the action of NO and illustrates that a relatively simple mechanism underlies the seemingly complex social decision to flee. The simple stimulus regime described here for inducing social defeat opens new avenues for investigating the cellular control of subordinate behavior and post-conflict depression.
Collapse
Affiliation(s)
- Jan Rillich
- Institute for Biology, Leipzig University Leipzig, Germany
| | | |
Collapse
|