1
|
Schuster S. The archerfish predictive C-start. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:827-837. [PMID: 37481772 PMCID: PMC10465633 DOI: 10.1007/s00359-023-01658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
A very quick decision enables hunting archerfish to secure downed prey even when they are heavily outnumbered by competing other surface-feeding fish. Based exclusively on information that is taken briefly after the onset of prey motion, the fish select a rapid C-start that turns them right towards the later point of catch. Moreover, the C-start, and not later fin strokes, already lends the fish the speed needed to arrive at just the right time. The archerfish predictive C-starts are kinematically not distinguishable from escape C-starts made by the same individual and are among the fastest C-starts known in teleost fish. The start decisions allow the fish-for ballistically falling prey-to respond accurately to any combination of the initial variables of prey movement and for any position and orientation of the responding fish. The start decisions do not show a speed-accuracy tradeoff and their accuracy is buffered against substantial changes of environmental parameters. Here, I introduce key aspects of this high-speed decision that combines speed, complexity, and precision in an unusual way.
Collapse
Affiliation(s)
- Stefan Schuster
- Lehrstuhl für Tierphysiologie , University of Bayreuth , 95440, Bayreuth, Germany.
| |
Collapse
|
2
|
Mendelson L, Techet AH. Jumping archer fish exhibit multiple modes of fin-fin interaction. BIOINSPIRATION & BIOMIMETICS 2020; 16:016006. [PMID: 32916673 DOI: 10.1088/1748-3190/abb78e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Aquatic organisms jumping for aerial prey require high-performance propulsion, accurate aim, and trajectory control to succeed. Archer fish, capable of jumping up to twice their body length out of the water, address these considerations through multifaceted fin and body kinematics. In this study, we utilized 3D synthetic aperture particle image velocimetry to visualize the wakes of archer fish throughout the jumping process. We found that multiple modes of interaction between the anal and caudal fins occur during jump behaviors. Time-resolved volumetric measurements presented herein illustrate the hydrodynamics of each interaction mode in detail. Additionally, regardless of which fin uses and interactions were exhibited during a jump, we found similar relationships between the cumulative impulse of multiple propulsive vortices in the wake and the instantaneous ballistic momentum of the fish. Our results suggests that fin use may compensate for variations in individual kinematic events and in the aiming posture assumed prior to jumping and highlight how interactions between tailbeats and other fins help the archer fish reach necessary prey heights in a spatially- and visually-constrained environment. In the broader context of bioinspired propulsion, the archer fish exemplifies that multiple beneficial hydrodynamic interactions can be generated in a high-performance scenario using a single set of actuators.
Collapse
Affiliation(s)
- Leah Mendelson
- Experimental Hydrodynamics Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Engineering, Harvey Mudd College, Claremont, CA 91711, United States of America
| | - Alexandra H Techet
- Experimental Hydrodynamics Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| |
Collapse
|
3
|
Newport C, Schuster S. Archerfish vision: Visual challenges faced by a predator with a unique hunting technique. Semin Cell Dev Biol 2020; 106:53-60. [PMID: 32522409 DOI: 10.1016/j.semcdb.2020.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 11/28/2022]
Abstract
Archerfish are well-known for their ballistic hunting behaviour, in which they shoot down aerial prey with a well-aimed jet of water. This unique hunting strategy poses several challenges for visual systems. Archerfish face significant distortion to the appearance of targets due to refraction at the air/water interface, they search for prey against a complex background of foliage, they change prey targeting behaviour as conditions change, and they must make high speed decisions to avoid competition. By studying how archerfish have overcome these challenges, we have been able to understand more about fundamental problems faced by visual systems and the mechanisms used to solve them. In some cases, such as when searching for targets, the visual capabilities of archerfish are functionally similar to those of humans, despite significant differences in neuroanatomy. In other cases, the particular challenge faced by archerfish magnifies fundamental problems generally faced by visual systems, such as recognizing objects given strong viewpoint dependent changes to appearance. The efficiency of archerfish retrieving fallen prey to avoid kleptoparasitism, demonstrates that their visual processing excels in both speed and accuracy. In this review, we attempt to provide an overview of the many facets of visually driven behaviour of archerfish, and how they have been studied. In addition to their hunting technique, archerfish are ideal for visual processing experiments as they can be quickly trained to perform a range of non-ecologically relevant tasks. Their behavioural flexibility moreover, introduces the opportunity to study how experience-dependence and choice affects visual processing.
Collapse
Affiliation(s)
- Cait Newport
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom.
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
4
|
Schuster S. Hunting in archerfish - an ecological perspective on a remarkable combination of skills. ACTA ACUST UNITED AC 2018; 221:221/24/jeb159723. [PMID: 30530768 DOI: 10.1242/jeb.159723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Archerfish are well known for using jets of water to dislodge distant aerial prey from twigs or leaves. This Review gives a brief overview of a number of skills that the fish need to secure prey with their shooting technique. Archerfish are opportunistic hunters and, even in the wild, shoot at artificial objects to determine whether these are rewarding. They can detect non-moving targets and use efficient search strategies with characteristics of human visual search. Their learning of how to engage targets can be remarkably efficient and can show impressive degrees of generalization, including learning from observation. In other cases, however, the fish seem unable to learn and it requires some understanding of the ecological and biophysical constraints to appreciate why. The act of shooting has turned out not to be of a simple all-or-none character. Rather, the fish adjust the volume of water fired according to target size and use fine adjustments in the timing of their mouth opening and closing manoeuvre to adjust the hydrodynamic stability of their jets to target distance. As soon as prey is dislodged and starts falling, the fish make rapid and yet sophisticated multi-dimensional decisions to secure their prey against many intraspecific and interspecific competitors. Although it is not known why and how archerfish evolved an ability to shoot in the first place, I suggest that the evolution of shooting has strongly pushed the co-evolution of diverse other skills that are needed to secure a catch.
Collapse
Affiliation(s)
- Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
5
|
Reinel CP, Schuster S. Rapid depth perception in hunting archerfish. II. An analysis of potential cues. ACTA ACUST UNITED AC 2018; 221:jeb.177352. [PMID: 29798848 DOI: 10.1242/jeb.177352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/19/2018] [Indexed: 11/20/2022]
Abstract
Based on the initial movement of falling prey, hunting archerfish select a C-start that turns them right to where their prey is going to land and lends the speed to arrive simultaneously with prey. Our companion study suggested that the information sampled in less than 100 ms also includes the initial height of falling prey. Here, we examine which cues the fish might be using to gauge height so quickly. First, we show that binocular cues are not required: C-starts that either could or could not have used binocular information were equally fast and precise. Next, we explored whether the fish were using simplifying assumptions about the absolute size of their prey or its distance from a structured background. However, experiments with unexpected changes from the standard conditions failed to cause any errors. We then tested the hypothesis that the fish might infer depth from accommodation or from cues related to blurring in the image of their falling prey. However, the fish also determined the height of 'fake flies' correctly, even though their image could never be focused and their combined size and degree of blurring should have misled the fish. Our findings are not compatible with the view that archerfish use a flexible combination of cues. They also do not support the view that height is gauged relative to structures in the vicinity of starting prey. We suggest that these fish use an elaborate analysis of looming to rapidly gauge initial height.
Collapse
Affiliation(s)
- Caroline P Reinel
- Department of Animal Physiology, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
6
|
Reinel CP, Schuster S. Rapid depth perception in hunting archerfish. I. The predictive C-starts use an independent estimate of target height. ACTA ACUST UNITED AC 2018; 221:jeb.177345. [PMID: 29798847 DOI: 10.1242/jeb.177345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/19/2018] [Indexed: 11/20/2022]
Abstract
Archerfish dislodge aerial prey with water jets and use their predictive C-starts to secure it. Their C-starts turn the fish to the later point of impact and set the speed so that the fish arrive just in time. The starts are adjusted on the basis of information on speed, direction, timing and horizontal start position of prey movement - sampled during less than 100 ms after prey starts falling. Presently, it is unclear whether one essential parameter, the initial height of prey, can also be determined during this brief sampling time. Shooters and probably also observing bystanders already know target height - used to hit and to shape their jets - and would simply have to feed this information into their C-start circuitry. We challenged archerfish by launching initially invisible prey objects either from the expected height level, at which the fish were looking and at which they fired shots, or from more lateral positions and a lower or higher initial height. The arrangement was designed so that an analysis of the direction and the linear speed chosen by the starting fish could determine whether the C-start information is based on the expected height or on the actual height, which can be detected only after hidden prey has begun falling. Our findings demonstrate that the fish quickly estimate initial height during the initial falling phase of prey and do not simply use the expected height level to which they were cued.
Collapse
Affiliation(s)
- Caroline P Reinel
- Department of Animal Physiology, University of Bayreuth, Bayreuth 95440, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
7
|
Machnik P, Leupolz K, Feyl S, Schulze W, Schuster S. The Mauthner cell in a fish with top-performance and yet flexibly tuned C-starts. I. Identification and comparative morphology. ACTA ACUST UNITED AC 2018; 221:jeb.182535. [PMID: 29789403 DOI: 10.1242/jeb.182535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 10/16/2022]
Abstract
Archerfish use two powerful C-starts: one to escape threats, the other to secure prey that they have downed with a shot of water. The two C-starts are kinematically equivalent and variable in both phases, and the predictive C-starts - used in hunting - are adjusted in terms of the angle of turning and the final linear speed to where and when their prey will hit the water surface. Presently, nothing is known about the neural circuits that drive the archerfish C-starts. As the starting point for a neuroethological analysis, we first explored the presence and morphology of a pair of Mauthner cells, which are key cells in the teleost fast-start system. We show that archerfish have a typical Mauthner cell in each medullary hemisphere and that these send by far the largest axons down the spinal cord. Stimulation of the spinal cord caused short-latency all-or-none field potentials that could be detected even at the surface of the medulla and that had the Mauthner cell as its only source. The archerfish's Mauthner cell is remarkably similar morphologically to that of equally sized goldfish, except that the archerfish's ventral dendrite is slightly longer and its lateral dendrite thinner. Our data provide the necessary starting point for the dissection of the archerfish fast-start system and of any role potentially played by its Mauthner cell in the two C-start manoeuvres. Moreover, they do not support the recently expressed view that Mauthner cells should be reduced in animals with highly variable fast-start manoeuvres.
Collapse
Affiliation(s)
- Peter Machnik
- Department of Animal Physiology, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Kathrin Leupolz
- Department of Animal Physiology, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Sabine Feyl
- Department of Animal Physiology, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Wolfram Schulze
- Department of Animal Physiology, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
8
|
Machnik P, Leupolz K, Feyl S, Schulze W, Schuster S. The Mauthner cell in a fish with top-performance and yet flexibly tuned C-starts. II. Physiology. ACTA ACUST UNITED AC 2018; 221:jeb.175588. [PMID: 29789405 DOI: 10.1242/jeb.175588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/09/2018] [Indexed: 11/20/2022]
Abstract
The parallel occurrence in archerfish of fine-tuned and yet powerful predictive C-starts as well as of kinematically identical escape C-starts makes archerfish an interesting system to test hypotheses on the roles played by the Mauthner cells, a pair of giant reticulospinal neurons. In this study, we show that the archerfish Mauthner cell shares all hallmark physiological properties with that of goldfish. Visual and acoustic inputs are received by the ventral and lateral dendrite, respectively, and cause complex postsynaptic potentials (PSPs) even in surgically anaesthetised fish. PSP shape did not indicate major differences between the species, but simple light flashes caused larger PSPs in archerfish, often driving the cell to fire an action potential. Probing archerfish in the classical tests for feedback inhibition, established in the Mauthner-associated networks in goldfish, revealed no differences between the two species, including the indications for electrical and chemical synaptic components. Also, the established hallmark experiments on feed-forward inhibition showed no differences between the goldfish and archerfish Mauthner system. Extending these experiments to visual stimuli also failed to detect any differences between the two species and suggested that acoustical and visual input cause feed-forward inhibition, the magnitude, time course and duration of which match that of the respective PSPs in both archerfish and goldfish. Our findings question simple views on the role of the Mauthner cell and suggest that the archerfish Mauthner cell should be a good system to explore the function of these giant neurons in more sophisticated C-start behaviours.
Collapse
Affiliation(s)
- Peter Machnik
- Department of Animal Physiology, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Kathrin Leupolz
- Department of Animal Physiology, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Sabine Feyl
- Department of Animal Physiology, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Wolfram Schulze
- Department of Animal Physiology, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
9
|
Shih AM, Mendelson L, Techet AH. Archer fish jumping prey capture: kinematics and hydrodynamics. J Exp Biol 2017; 220:1411-1422. [PMID: 28424312 DOI: 10.1242/jeb.145623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/27/2017] [Indexed: 11/20/2022]
Abstract
Smallscale archer fish, Toxotes microlepis, are best known for spitting jets of water to capture prey, but also hunt by jumping out of the water to heights of up to 2.5 body lengths. In this study, high-speed imaging and particle image velocimetry were used to characterize the kinematics and hydrodynamics of this jumping behavior. Jumping used a set of kinematics distinct from those of in-water feeding strikes and was segmented into three phases: (1) hovering to sight prey at the surface, (2) rapid upward thrust production and (3) gliding to the prey once out of the water. The number of propulsive tail strokes positively correlated with the height of the bait, as did the peak body velocity observed during a jump. During the gliding stage, the fish traveled ballistically; the kinetic energy when the fish left the water balanced with the change in potential energy from water exit to the maximum jump height. The ballistic estimate of the mechanical energy required to jump was comparable with the estimated mechanical energy requirements of spitting a jet with sufficient momentum to down prey and subsequently pursuing the prey in water. Particle image velocimetry showed that, in addition to the caudal fin, the wakes of the anal, pectoral and dorsal fins were of nontrivial strength, especially at the onset of thrust production. During jump initiation, these fins were used to produce as much vertical acceleration as possible given the spatial constraint of starting directly at the water's surface to aim.
Collapse
Affiliation(s)
- Anna M Shih
- Experimental Hydrodynamics Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leah Mendelson
- Experimental Hydrodynamics Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra H Techet
- Experimental Hydrodynamics Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|