1
|
Barrie R, Haalck L, Risse B, Nowotny T, Graham P, Buehlmann C. Trail using ants follow idiosyncratic routes in complex landscapes. Learn Behav 2024; 52:105-113. [PMID: 37993707 PMCID: PMC10924020 DOI: 10.3758/s13420-023-00615-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
A large volume of research on individually navigating ants has shown how path integration and visually guided navigation form a major part of the ant navigation toolkit for many species and are sufficient mechanisms for successful navigation. One of the behavioural markers of the interaction of these mechanisms is that experienced foragers develop idiosyncratic routes that require that individual ants have personal and unique visual memories that they use to guide habitual routes between the nest and feeding sites. The majority of ants, however, inhabit complex cluttered environments and social pheromone trails are often part of the collective recruitment, organisation and navigation of these foragers. We do not know how individual navigation interacts with collective behaviour along shared trails in complex natural environments. We thus asked here if wood ants that forage through densely cluttered woodlands where they travel along shared trails repeatedly follow the same routes or if they choose a spread of paths within the shared trail. We recorded three long homing trajectories of 20 individual wood ants in their natural woodland habitat. We found that wood ants follow idiosyncratic routes when navigating along shared trails through highly complex visual landscapes. This shows that ants rely on individual memories for habitual route guidance even in cluttered environments when chemical trail information is available. We argue that visual cues are likely to be the dominant sensory modality for the idiosyncratic routes. These experiments shed new light on how ants, or insects in general, navigate through complex multimodal environments.
Collapse
Affiliation(s)
- Robert Barrie
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Lars Haalck
- Institute for Geoinformatics and Institute for Computer Science, University of Münster, Heisenbergstraße 2, 48149, Münster, Germany
| | - Benjamin Risse
- Institute for Geoinformatics and Institute for Computer Science, University of Münster, Heisenbergstraße 2, 48149, Münster, Germany
| | - Thomas Nowotny
- School of Engineering and Informatics, University of Sussex, Brighton, BN1 9QJ, UK
| | - Paul Graham
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | | |
Collapse
|
2
|
Tross J, Wolf H, Stemme T, Pfeffer SE. Locomotion in the pseudoscorpion Chelifer cancroides - forward, backward and upside down walking in an eight-legged arthropod. J Exp Biol 2022; 225:275033. [PMID: 35438154 DOI: 10.1242/jeb.243930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
While insect locomotion has been intensively studied, there are comparably few studies investigating octopedal walking behaviour, and very little is known about pseudoscorpions in particular. Therefore, we performed an extensive locomotion analysis during forward, backward and upside down walking in the cosmopolitan pseudoscorpion Chelifer cancroides. During forward locomotion, we observed C. cancroides to freeze locomotion frequently for short time periods. These microstops were barely visible to the naked eye with a duration of 100-200 ms. Our locomotion analysis revealed that C. cancroides performs a statically stable and highly coordinated alternating tetrapod gait during forward and backward walking, with almost complete inversion of the tetrapod schemes, but no rigidly fixed leg coordination during upside down walks with low walking speeds up to 4 body lengths per second. Highest speeds (up to 17 body lengths per second), mainly achieved by consistent leg coordination and strong phase shifts, were observed during backward locomotion (escape behaviour), while forward walking was characterised by lower speeds and phase shifts around 10% between two loosely coupled leg groups within one tetrapod. That is, during the movement of one tetrapod group, the last and the third leg are almost synchronous in their swing phases, as are the second and the first leg. A special role of the second leg pair was demonstrated, probably mainly for stability reasons and related to the large pedipalps.
Collapse
Affiliation(s)
- Johanna Tross
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Torben Stemme
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
3
|
Tross J, Wolf H, Pfeffer SE. Allometry in desert ant locomotion (Cataglyphis albicans and Cataglyphis bicolor) - does body size matter? J Exp Biol 2021; 224:272038. [PMID: 34477873 DOI: 10.1242/jeb.242842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
Desert ants show a large range of adaptations to their habitats. They can reach extremely high running speeds, for example, to shorten heat stress during foraging trips. It has recently been examined how fast walking speeds are achieved in different desert ant species. It is intriguing in this context that some species exhibit distinct intraspecific size differences. We therefore performed a complete locomotion analysis over the entire size spectrum of the species Cataglyphis bicolor, and we compared this intraspecific dataset with that of the allometrically similar species Cataglyphis albicans. Emphasis was on the allometry of locomotion: we considered the body size of each animal and analysed the data in terms of relative walking speed. Body size was observed to affect walking parameters, gait patterns and phase relationships in terms of absolute walking speed. Unexpectedly, on a relative scale, all ants tended to show the same overall locomotion strategy at low walking speeds, and significant differences occurred only between C. albicans and C. bicolor at high walking speeds. Our analysis revealed that C. bicolor ants use the same overall strategy across all body sizes, with small ants reaching the highest walking speeds (up to 80 body lengths s-1) by increasing their stride length and incorporating aerial phases. By comparison, C. albicans reached high walking speeds mainly by a high synchrony of leg movement, lower swing phase duration and higher stride frequency ranging up to 40 Hz.
Collapse
Affiliation(s)
- Johanna Tross
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
4
|
Merienne H, Latil G, Moretto P, Fourcassié V. Dynamics of locomotion in the seed harvesting ant Messor barbarus: effect of individual body mass and transported load mass. PeerJ 2021; 9:e10664. [PMID: 33575127 PMCID: PMC7849507 DOI: 10.7717/peerj.10664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Ants are well-known for their amazing load carriage performances. Yet, the biomechanics of locomotion during load transport in these insects has so far been poorly investigated. Here, we present a study of the biomechanics of unloaded and loaded locomotion in the polymorphic seed-harvesting ant Messor barbarus (Linnaeus, 1767). This species is characterized by a strong intra-colonial size polymorphism with allometric relationships between the different body parts of the workers. In particular, big ants have much larger heads relative to their size than small ants. Their center of mass is thus shifted forward and even more so when they are carrying a load in their mandibles. We investigated the dynamics of the ant center of mass during unloaded and loaded locomotion. We found that during both unloaded and loaded locomotion, the kinetic energy and gravitational potential energy of the ant center of mass are in phase, which is in agreement with what has been described by other authors as a grounded-running gait. During unloaded locomotion, small and big ants do not display the same posture. However, they expend the same amount of mechanical energy to raise and accelerate their center of mass per unit of distance and per unit of body mass. While carrying a load, compared to the unloaded situation, ants seem to modify their locomotion gradually with increasing load mass. Therefore, loaded and unloaded locomotion do not involve discrete types of gait. Moreover, small ants carrying small loads expend less mechanical energy per unit of distance and per unit of body mass and their locomotion thus seem more mechanically efficient.
Collapse
Affiliation(s)
- Hugo Merienne
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gérard Latil
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Moretto
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vincent Fourcassié
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
5
|
Rules for the Leg Coordination of Dung Beetle Ball Rolling Behaviour. Sci Rep 2020; 10:9278. [PMID: 32518382 PMCID: PMC7283283 DOI: 10.1038/s41598-020-66248-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
Dung beetles can perform a number of versatile behaviours, including walking and dung ball rolling. While different walking and running gaits of dung beetles have been described in previous literature, little is known about their ball rolling gaits. From behavioural experiments and video recordings of the beetle Scarabaeus (Kheper) lamarcki, we analysed and identified four underlying rules for leg coordination during ball rolling. The rules describe the alternation of the front legs and protraction waves of the middle and hind legs. We found that while rolling a ball backwards, the front legs are decoupled or loosely coupled from the other legs, resulting in a non-standard gait, in contrast to previously described tripod and gallop walking gaits in dung beetles. This provides insight into the principles of leg coordination in dung beetle ball rolling behaviour and its underlying rules. The proposed rules can be used as a basis for further investigation into ball rolling behaviours on more complex terrain (e.g., uneven terrain and slopes). Additionally, the rules can also be used to guide the development of control mechanisms for bio-inspired ball rolling robots.
Collapse
|
6
|
|
7
|
Schilling M, Cruse H. Decentralized control of insect walking: A simple neural network explains a wide range of behavioral and neurophysiological results. PLoS Comput Biol 2020; 16:e1007804. [PMID: 32339162 PMCID: PMC7205325 DOI: 10.1371/journal.pcbi.1007804] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/07/2020] [Accepted: 03/19/2020] [Indexed: 01/02/2023] Open
Abstract
Controlling the six legs of an insect walking in an unpredictable environment is a challenging task, as many degrees of freedom have to be coordinated. Solutions proposed to deal with this task are usually based on the highly influential concept that (sensory-modulated) central pattern generators (CPG) are required to control the rhythmic movements of walking legs. Here, we investigate a different view. To this end, we introduce a sensor based controller operating on artificial neurons, being applied to a (simulated) insectoid robot required to exploit the "loop through the world" allowing for simplification of neural computation. We show that such a decentralized solution leads to adaptive behavior when facing uncertain environments which we demonstrate for a broad range of behaviors never dealt with in a single system by earlier approaches. This includes the ability to produce footfall patterns such as velocity dependent "tripod", "tetrapod", "pentapod" as well as various stable intermediate patterns as observed in stick insects and in Drosophila. These patterns are found to be stable against disturbances and when starting from various leg configurations. Our neuronal architecture easily allows for starting or interrupting a walk, all being difficult for CPG controlled solutions. Furthermore, negotiation of curves and walking on a treadmill with various treatments of individual legs is possible as well as backward walking and performing short steps. This approach can as well account for the neurophysiological results usually interpreted to support the idea that CPGs form the basis of walking, although our approach is not relying on explicit CPG-like structures. Application of CPGs may however be required for very fast walking. Our neuronal structure allows to pinpoint specific neurons known from various insect studies. Interestingly, specific common properties observed in both insects and crustaceans suggest a significance of our controller beyond the realm of insects.
Collapse
Affiliation(s)
- Malte Schilling
- Cluster of Excellence Cognitive Interactive Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Holk Cruse
- Cluster of Excellence Cognitive Interactive Technology (CITEC), Bielefeld University, Bielefeld, Germany
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
8
|
Path integration in a three-dimensional world: the case of desert ants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:379-387. [PMID: 32020292 PMCID: PMC7192874 DOI: 10.1007/s00359-020-01401-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/03/2022]
Abstract
Desert ants use path integration to return from foraging excursions on a shortcut way to their nests. Intriguingly, when walking over hills, the ants incorporate the ground distance, the paths’ projection to the horizontal plane, into their path integrator. This review discusses how Cataglyphis may solve this computational feat. To infer ground distance, ants must incorporate the inclination of path segments into the assessment of distance. Hair fields between various joints have been eliminated as likely sensors for slope measurement, without affecting slope detection; nor do postural adaptations or changes in gait provide the relevant information. Changes in the sky’s polarization pattern due to different head inclinations on slopes were ruled out as cues. Thus, the mechanisms by which ants may measure slopes still await clarification. Remarkably, the precision of slope measurement is roughly constant up to a 45° inclination, but breaks down at 60°. An encounter of sloped path segments during a foraging trip induces a general acceptance of slopes, however, slopes are not associated with specific values of the home vector. All current evidence suggests that Cataglyphis does not compute a vector in 3-D: path integration seems to operate exclusively in the horizontal plane.
Collapse
|
9
|
Merienne H, Latil G, Moretto P, Fourcassié V. Walking kinematics in the polymorphic seed harvester ant Messor barbarus: influence of body size and load carriage. ACTA ACUST UNITED AC 2020; 223:jeb.205690. [PMID: 31836653 DOI: 10.1242/jeb.205690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/05/2019] [Indexed: 11/20/2022]
Abstract
Ants are famous in the animal kingdom for their amazing load-carrying performance. Yet, the mechanisms that allow these insects to maintain their stability when carrying heavy loads have been poorly investigated. Here, we present a study of the kinematics of unloaded and loaded locomotion in the polymorphic seed-harvesting ant Messor barbarus In this species, large ants have larger heads relative to their size than small ants. Hence, their center of mass is shifted forward, and even more so when they are carrying a load in their mandibles. We tested the hypothesis that this could lead to large ants being less statically stable than small ants, thus explaining their lower load-carrying ability. We found that large ants were indeed less statically stable than small ants when walking unloaded, but they were nonetheless able to adjust their stepping pattern to partly compensate for this instability. When ants were walking loaded on the other hand, there was no evidence of different locomotor behaviors in individuals of different sizes. Loaded ants, whatever their size, move too slowly to maintain their balance through dynamic stability. Rather, they seem to do so by clinging to the ground with their hind legs during part of a stride. We show through a straightforward model that allometric relationships have a minor role in explaining the differences in load-carrying ability between large ants and small ants, and that a simple scale effect is sufficient to explain these differences.
Collapse
Affiliation(s)
- Hugo Merienne
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex 09, France
| | - Gérard Latil
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex 09, France
| | - Pierre Moretto
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex 09, France
| | - Vincent Fourcassié
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex 09, France
| |
Collapse
|
10
|
Pfeffer SE, Wahl VL, Wittlinger M, Wolf H. High-speed locomotion in the Saharan silver ant, Cataglyphis bombycina. J Exp Biol 2019; 222:222/20/jeb198705. [DOI: 10.1242/jeb.198705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/29/2019] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The diurnal thermophilic Saharan silver ant, Cataglyphis bombycina, is the fastest of the North African Cataglyphis desert ant species. These highly mobile ants endure the extreme temperatures of their sand dune environment with outstanding behavioural, physiological and morphological adaptations. Surprisingly, C. bombycina has comparatively shorter legs than its well-studied sister species Cataglyphis fortis from salt pan habitats. This holds despite the somewhat hotter surface temperatures and the more yielding sand substrate. Here, we report that C. bombycina employs a different strategy in reaching high running speeds, outperforming the fastest known runs of the longer-legged C. fortis ants. Video analysis across a broad range of locomotor speeds revealed several differences to C. fortis. Shorter leg lengths are compensated for by high stride frequencies, ranging beyond 40 Hz. This is mainly achieved by a combination of short stance phases (down to 7 ms) and fast leg swing movements (up to 1400 mm s−1). The legs of one tripod group exhibit almost perfect synchrony in the timings of their lift-offs and touch-downs, and good tripod coordination is present over the entire walking speed range (tripod coordination strength values around 0.8). This near synchrony in leg movement may facilitate locomotion across the yielding sand dune substrate.
Collapse
Affiliation(s)
| | - Verena Luisa Wahl
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Wittlinger
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute of Biology I, University of Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
11
|
Collett M, Graham P, Collett TS. Insect Navigation: What Backward Walking Reveals about the Control of Movement. Curr Biol 2019; 27:R141-R144. [PMID: 28222290 DOI: 10.1016/j.cub.2016.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ants often walk backwards to drag large prey to their nest. New experiments show how they can use information from retinotopically encoded views to follow visual routes even while moving backwards. The mechanisms enabling ants to decouple body orientation and the control of travel direction are likely to be shared with other, flying, insects.
Collapse
Affiliation(s)
- Matthew Collett
- Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK.
| | - Paul Graham
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| | - Thomas S Collett
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
12
|
Motor flexibility in insects: adaptive coordination of limbs in locomotion and near-range exploration. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2412-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
How Ants Use Vision When Homing Backward. Curr Biol 2017; 27:401-407. [DOI: 10.1016/j.cub.2016.12.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/10/2016] [Accepted: 12/09/2016] [Indexed: 01/11/2023]
|
14
|
Knight K. Reversing ants navigate successfully. J Exp Biol 2016. [DOI: 10.1242/jeb.145425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|