1
|
Torson AS, Bowman S, Doucet D, Roe AD, Sinclair BJ. Molecular signatures of diapause in the Asian longhorned beetle: Gene expression. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100054. [PMID: 37033896 PMCID: PMC10074507 DOI: 10.1016/j.cris.2023.100054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 05/30/2023]
Abstract
Most previous studies on gene expression during insect diapause do not address among-tissue variation in physiological processes. We measured transcriptomic changes during larval diapause in the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae). We conducted RNA-seq on fat body, the supraesophageal ganglion, midgut, hindgut, and Malpighian tubules during pre-diapause, diapause maintenance, post-diapause quiescence, and post-diapause development. We observed a small, but consistent, proportion of genes within each gene expression profile that were shared among tissues, lending support for a core set of diapause-associated genes whose expression is tissue-independent. We evaluated the overarching hypotheses that diapause would be associated with cell cycle arrest, developmental arrest, and increased stress tolerance and found evidence of repressed TOR and insulin signaling, reduced cell cycle activity and increased capacity of stress response via heat shock protein expression and remodeling of the cytoskeleton. However, these processes varied among tissues, with the brain and fat body appearing to maintain higher levels of cellular activity during diapause than the midgut or Malpighian tubules. We also observed temperature-dependent changes in gene expression during diapause maintenance, particularly in genes related to the heat shock response and MAPK, insulin, and TOR signaling pathways. Additionally, we provide evidence for epigenetic reorganization during the diapause/post-diapause quiescence transition and expression of genes involved in post-translational modification, highlighting the need for investigations of the protein activity of these candidate genes and processes. We conclude that diapause development is coordinated via diverse tissue-specific gene expression profiles and that canonical diapause phenotypes vary among tissues.
Collapse
Affiliation(s)
- Alex S. Torson
- Department of Biology, The University of Western Ontario, London ON N6A 5B7, Canada
- Biosciences Research Laboratory, USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, United States
| | - Susan Bowman
- Great Lakes Forestry Centre, Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Daniel Doucet
- Great Lakes Forestry Centre, Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Amanda D. Roe
- Great Lakes Forestry Centre, Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Brent J. Sinclair
- Department of Biology, The University of Western Ontario, London ON N6A 5B7, Canada
| |
Collapse
|
2
|
The Build-Up of Population Genetic Divergence along the Speciation Continuum during a Recent Adaptive Radiation of Rhagoletis Flies. Genes (Basel) 2022; 13:genes13020275. [PMID: 35205320 PMCID: PMC8872456 DOI: 10.3390/genes13020275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
New species form through the evolution of genetic barriers to gene flow between previously interbreeding populations. The understanding of how speciation proceeds is hampered by our inability to follow cases of incipient speciation through time. Comparative approaches examining different diverging taxa may offer limited inferences, unless they fulfill criteria that make the comparisons relevant. Here, we test for those criteria in a recent adaptive radiation of the Rhagoletis pomonella species group (RPSG) hypothesized to have diverged in sympatry via adaptation to different host fruits. We use a large-scale population genetic survey of 1568 flies across 33 populations to: (1) detect on-going hybridization, (2) determine whether the RPSG is derived from the same proximate ancestor, and (3) examine patterns of clustering and differentiation among sympatric populations. We find that divergence of each in-group RPSG taxon is occurring under current gene flow, that the derived members are nested within the large pool of genetic variation present in hawthorn-infesting populations of R. pomonella, and that sympatric population pairs differ markedly in their degree of genotypic clustering and differentiation across loci. We conclude that the RPSG provides a particularly robust opportunity to make direct comparisons to test hypotheses about how ecological speciation proceeds despite on-going gene flow.
Collapse
|
3
|
Calvert MB, Doellman MM, Feder JL, Hood GR, Meyers P, Egan SP, Powell THQ, Glover MM, Tait C, Schuler H, Berlocher SH, Smith JJ, Nosil P, Hahn DA, Ragland GJ. Genomically correlated trait combinations and antagonistic selection contributing to counterintuitive genetic patterns of adaptive diapause divergence in Rhagoletis flies. J Evol Biol 2021; 35:146-163. [PMID: 34670006 DOI: 10.1111/jeb.13952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Adaptation to novel environments can result in unanticipated genomic responses to selection. Here, we illustrate how multifarious, correlational selection helps explain a counterintuitive pattern of genetic divergence between the recently derived apple- and ancestral hawthorn-infesting host races of Rhagoletis pomonella (Diptera: Tephritidae). The apple host race terminates diapause and emerges as adults earlier in the season than the hawthorn host race, to coincide with the earlier fruiting phenology of their apple hosts. However, alleles at many loci associated with later emergence paradoxically occur at higher frequencies in sympatric populations of the apple compared to the hawthorn race. We present genomic evidence that historical selection over geographically varying environmental gradients across North America generated genetic correlations between two life history traits, diapause intensity and diapause termination, in the hawthorn host race. Moreover, the loci associated with these life history traits are concentrated in genomic regions in high linkage disequilibrium (LD). These genetic correlations are antagonistic to contemporary selection on local apple host race populations that favours increased initial diapause depth and earlier, not later, diapause termination. Thus, the paradox of apple flies appears due, in part, to pleiotropy or linkage of alleles associated with later adult emergence and increased initial diapause intensity, the latter trait strongly selected for by the earlier phenology of apples. Our results demonstrate how understanding of multivariate trait combinations and the correlative nature of selective forces acting on them can improve predictions concerning adaptive evolution and help explain seemingly counterintuitive patterns of genetic diversity in nature.
Collapse
Affiliation(s)
- McCall B Calvert
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana, USA
| | - Glen R Hood
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Biosciences, Rice University, Houston, Texas, USA.,Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Peter Meyers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Scott P Egan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Biosciences, Rice University, Houston, Texas, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Biological Sciences, Binghamton University (State University of New York), Binghamton, New York, USA
| | - Mary M Glover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Cheyenne Tait
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Hannes Schuler
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen, Italy
| | - Stewart H Berlocher
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - James J Smith
- Department of Entomology, Lyman Briggs College, Michigan State University, East Lansing, Michigan, USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,CEFE, CNRS, EPHE, IRD, Univ Montpellier, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
4
|
Inskeep KA, Doellman MM, Powell THQ, Berlocher SH, Seifert NR, Hood GR, Ragland GJ, Meyers PJ, Feder JL. Divergent diapause life history timing drives both allochronic speciation and reticulate hybridization in an adaptive radiation of Rhagoletis flies. Mol Ecol 2021; 31:4031-4049. [PMID: 33786930 DOI: 10.1111/mec.15908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022]
Abstract
Divergent adaptation to new ecological opportunities can be an important factor initiating speciation. However, as niches are filled during adaptive radiations, trait divergence driving reproductive isolation between sister taxa may also result in trait convergence with more distantly related taxa, increasing the potential for reticulated gene flow across the radiation. Here, we demonstrate such a scenario in a recent adaptive radiation of Rhagoletis fruit flies, specialized on different host plants. Throughout this radiation, shifts to novel hosts are associated with changes in diapause life history timing, which act as "magic traits" generating allochronic reproductive isolation and facilitating speciation-with-gene-flow. Evidence from laboratory rearing experiments measuring adult emergence timing and genome-wide DNA-sequencing surveys supported allochronic speciation between summer-fruiting Vaccinium spp.-infesting Rhagoletis mendax and its hypothesized and undescribed sister taxon infesting autumn-fruiting sparkleberries. The sparkleberry fly and R. mendax were shown to be genetically discrete sister taxa, exhibiting no detectable gene flow and allochronically isolated by a 2-month average difference in emergence time corresponding to host availability. At sympatric sites across the southern USA, the later fruiting phenology of sparkleberries overlaps with that of flowering dogwood, the host of another more distantly related and undescribed Rhagoletis taxon. Laboratory emergence data confirmed broadly overlapping life history timing and genomic evidence supported on-going gene flow between sparkleberry and flowering dogwood flies. Thus, divergent phenological adaptation can drive the initiation of reproductive isolation, while also enhancing genetic exchange across broader adaptive radiations, potentially serving as a source of novel genotypic variation and accentuating further diversification.
Collapse
Affiliation(s)
- Katherine A Inskeep
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University (State University of New York), Binghamton, NY, USA
| | - Stewart H Berlocher
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas R Seifert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Glen R Hood
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Peter J Meyers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
5
|
Wilsterman K, Ballinger MA, Williams CM. A unifying, eco‐physiological framework for animal dormancy. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13718] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kathryn Wilsterman
- Biological Sciences University of Montana Missoula MT USA
- Integrative Biology University of California Berkeley CA USA
| | | | | |
Collapse
|
6
|
Yang M, Wang Z, Wang R, Zhang X, Li M, Xin J, Qin Y, Zhang C, Meng F. Transcriptomic and proteomic analyses of the mechanisms of overwintering diapause in soybean pod borer (Leguminivora glycinivorella). PEST MANAGEMENT SCIENCE 2020; 76:4248-4257. [PMID: 32633047 DOI: 10.1002/ps.5989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/24/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Soybean pod borer (Leguminivora glycinivorella) is an important soybean pest in north-eastern Asia, whose mature larvae overwinter in a diapause state. Disruption of winter diapause may be a valuable tool in pest management. However, the molecular mechanisms regulating diapause in this species have not yet been elucidated. RESULTS We compared the transcriptomes and proteomes between diapause and mature larvae and between mature and newly developed pupae to identify the genes and proteins associated with diapause. Thirty-seven differentially expressed genes and their proteins changed synchronously between diapause and mature larvae and 82 changed synchronously between diapause larvae and newly developed pupae. Among these, genes involved in fatty acid biosynthesis and the longevity regulating pathway were up-regulated in diapause larvae and down-regulated in newly developed pupae, suggesting that they may regulate diapause. One fatty acid synthase (FAS) gene and two small heat shock genes (HSP19.8 and HSP18.9) were chosen for further functional analysis. After RNA interference (RNAi)-mediated knockdown of FAS, the survival of mature larvae was significantly lower than that of control larvae, but the mean developmental time from first-instar larva to adult remained unchanged. RNAi-mediated knockdown of HSP19.8 and HSP18.9 severely shortened the mean developmental time, causing approximately 50% larvae to develop directly into pupae. CONCLUSION FAS and the small heat shock gene play roles in diapause regulation and larvae survival. This study provides important information that may assist in understanding the molecular regulatory mechanisms of overwintering diapause of this important agricultural insect pest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingyu Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhanchun Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Rui Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaoming Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Mingyue Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Junjie Xin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yushi Qin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chuan Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Fanli Meng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Dowle EJ, Powell THQ, Doellman MM, Meyers PJ, Calvert MB, Walden KKO, Robertson HM, Berlocher SH, Feder JL, Hahn DA, Ragland GJ. Genome-wide variation and transcriptional changes in diverse developmental processes underlie the rapid evolution of seasonal adaptation. Proc Natl Acad Sci U S A 2020; 117:23960-23969. [PMID: 32900926 PMCID: PMC7519392 DOI: 10.1073/pnas.2002357117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many organisms enter a dormant state in their life cycle to deal with predictable changes in environments over the course of a year. The timing of dormancy is therefore a key seasonal adaptation, and it evolves rapidly with changing environments. We tested the hypothesis that differences in the timing of seasonal activity are driven by differences in the rate of development during diapause in Rhagoletis pomonella, a fly specialized to feed on fruits of seasonally limited host plants. Transcriptomes from the central nervous system across a time series during diapause show consistent and progressive changes in transcripts participating in diverse developmental processes, despite a lack of gross morphological change. Moreover, population genomic analyses suggested that many genes of small effect enriched in developmental functional categories underlie variation in dormancy timing and overlap with gene sets associated with development rate in Drosophila melanogaster Our transcriptional data also suggested that a recent evolutionary shift from a seasonally late to a seasonally early host plant drove more rapid development during diapause in the early fly population. Moreover, genetic variants that diverged during the evolutionary shift were also enriched in putative cis regulatory regions of genes differentially expressed during diapause development. Overall, our data suggest polygenic variation in the rate of developmental progression during diapause contributes to the evolution of seasonality in R. pomonella We further discuss patterns that suggest hourglass-like developmental divergence early and late in diapause development and an important role for hub genes in the evolution of transcriptional divergence.
Collapse
Affiliation(s)
- Edwina J Dowle
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217;
- Department of Anatomy, University of Otago, 9016 Dunedin, New Zealand
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University-State University of New York, Binghamton, NY 13902
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637
| | - Peter J Meyers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - McCall B Calvert
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Stewart H Berlocher
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Environmental Change Initiative, University of Notre Dame, Notre Dame, IN 46556
| | - Daniel A Hahn
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217;
- Department of Entomology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
8
|
Development and diapause induction of the Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) at different photoperiods. Sci Rep 2020; 10:14707. [PMID: 32895417 PMCID: PMC7477568 DOI: 10.1038/s41598-020-71659-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/11/2020] [Indexed: 11/09/2022] Open
Abstract
Diapause concerns the fascinating phenomenon in the biology of insect development which allows better understanding the local adaptation and phenotypic plasticity to seasonal variations in environment. There is lot of reasons to carry out the research on diapause both for fundamental and applied sciences. Photoperiod is one of the main environmental cues followed by insects to predict the forthcoming seasonal changes and to adapt these changes in their life-history traits. Thus, the effect of different photoperiod regimes on development and diapause induction of larvae of the Indian meal moth Plodia interpunctella (Hübner) was evaluated at a constant temperature of 17 °C. Development was significantly faster at a photoperiod of 12:12 light:darkness (L:D) than at 8:16, 10:14, 14:10 and 16:8 L:D. A photoperiod of 12:12 (L:D) induced most larvae (≥ 71%) to enter diapause, while this percentage was slightly lower (60%) at both shorter(8 h) and longer (16 h) day lengths (50%). The different photoperiod regimes did not affect the percentage of adult emergence. Fat and protein composition of the diapausing larvae differed significantly among treatments as well as between diapausing and non-diapausing larvae. Larvae developing from 8:16 (L:D) contained the maximum amount of protein (36.8%) compared to other regimes, while the minimum amount (21.0%) was noted in larvae that developed at 16:8 (L:D). Six types of fatty acids were detected in the larvae: myristic acid (methyl tetradecenoate), palmitoleic acid (9-hexadecenoic acid, methyl ester), palmitic acid (hexadecenoic acid, methyl ester), linoleic acid (9, 12-Octadecadienoic acid (Z, Z), methyl ester), oleic acid [9-octadecenoic acid, methyl ester (E)] and stearic acid (octadecanoic acid, methyl ester). The results also reveal that the percent of fatty acids detected in the diapausing larvae varies significantly and the same trends imply in the interaction of fatty acid and photoperiod regimes. Moreover, three quarters of the total variance was accounted for by the Principal Component Analysis (PCA) of the fatty acids. Different proportions of fatty acids were noted among treatments, suggesting that photoperiod influences a number of key biological traits in P. interpunctella, much more than the percentage of the diapausing larvae per se.
Collapse
|
9
|
Powell THQ, Nguyen A, Xia Q, Feder JL, Ragland GJ, Hahn DA. A rapidly evolved shift in life‐history timing during ecological speciation is driven by the transition between developmental phases. J Evol Biol 2020; 33:1371-1386. [DOI: 10.1111/jeb.13676] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Thomas H. Q. Powell
- Entomology and Nematology Department University of Florida Gainesville Florida USA
- Department of Biological Sciences Binghamton University (State University of New York) Binghamton New York USA
| | - Andrew Nguyen
- Entomology and Nematology Department University of Florida Gainesville Florida USA
| | - Qinwen Xia
- Entomology and Nematology Department University of Florida Gainesville Florida USA
| | - Jeffrey L. Feder
- Department of Biological Sciences University of Notre DameNotre Dame Indiana USA
| | - Gregory J. Ragland
- Department of Integrative Biology University of Colorado Denver Denver Colorado USA
| | - Daniel A. Hahn
- Entomology and Nematology Department University of Florida Gainesville Florida USA
| |
Collapse
|
10
|
Ragland GJ, Armbruster PA, Meuti ME. Evolutionary and functional genetics of insect diapause: a call for greater integration. CURRENT OPINION IN INSECT SCIENCE 2019; 36:74-81. [PMID: 31539788 PMCID: PMC7212789 DOI: 10.1016/j.cois.2019.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Diapause in response to seasonality is an important model for rapid evolutionary adaptation that is highly genetically variable, and experiences strong natural selection. Forward genetic methods using various genomic and transcriptomic approaches have begun to characterize the genetic architecture and candidate genes underlying diapause evolution. Largely in parallel, reverse genetic studies have identified functional roles for candidate genes that may or may not be genetically variable. We illustrate the disconnect between the evolutionary and physiological literature using a suite of studies of the role of the circadian clock in diapause regulation. These extensive studies in two different disciplines provide excellent opportunities for integration, which should facilitate rapid progress in understanding both the regulation and evolution of diapause.
Collapse
Affiliation(s)
- Gregory J Ragland
- Department of Integrative Biology, University of Colorado, Denver, 1151 Arapahoe St., SI 2071, Denver, CO 80204, USA.
| | - Peter A Armbruster
- Department of Biology, Georgetown University, Reiss Science Building, Room 406 37th and O Streets, NW Washington DC 20057, USA
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 216 Kottman Hall 2021 Coffey Road, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Dong YC, Chen ZZ, Clarke AR, Niu CY. Changes in Energy Metabolism Trigger Pupal Diapause Transition of Bactrocera minax After 20-Hydroxyecdysone Application. Front Physiol 2019; 10:1288. [PMID: 31736767 PMCID: PMC6831740 DOI: 10.3389/fphys.2019.01288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/25/2019] [Indexed: 11/21/2022] Open
Abstract
Correct timing of diapause entry and exit is critical for a species' survival. While many aspects of insect diapause are well-studied, the mechanisms underlying diapause termination remain largely unknown. The Chinese citrus fly, Bactrocera minax, is a univoltine insect with an obligatory pupal diapause. The application of 20-hydroxyecdysone (20E) is known to terminate diapause in B. minax, and we used this approach, along with isobaric tags for relative and absolute quantitation technology, to determine the proteins associated with diapause termination in this fly. Among 2,258 identified proteins, 1,169 proteins significantly differed at 1, 2, and 5 days post-injection of 20E, compared with the solvent-injected control group. Functional annotation revealed that the majority of differentially expressed proteins were enriched in the core energy metabolism of amino acids, proteins, lipids, and carbohydrates as well as in signal transduction pathways including PPAR signaling, Calcium signaling, Glucagon signaling, VEGF signaling, Ras signaling, cGMP-PKG signaling, and cAMP signaling. A combined transcriptomic and proteomic analysis suggested the involvement of energy metabolism in the response of diapause transition. RNA interference experiments disclosed that a 20E injection triggers diapause termination probably through non-genomic actions, rather than nuclear receptor mediated genomic actions. Our results provide extensive proteomic resources for insect diapause transition and offer a potential for pest control by incapacitating the regulation of diapause termination either by breaking diapause prematurely or by delaying diapause termination to render diapausing individuals at a high risk of mortality.
Collapse
Affiliation(s)
- Yong-Cheng Dong
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China.,Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhen-Zhong Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Anthony R Clarke
- Faculty of Science and Technology, School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chang-Ying Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Zhang C, Wei D, Shi G, Huang X, Cheng P, Liu G, Guo X, Liu L, Wang H, Miao F, Gong M. Understanding the regulation of overwintering diapause molecular mechanisms in Culex pipiens pallens through comparative proteomics. Sci Rep 2019; 9:6485. [PMID: 31019237 PMCID: PMC6482188 DOI: 10.1038/s41598-019-42961-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 04/12/2019] [Indexed: 12/23/2022] Open
Abstract
To reveal overwintering dormancy (diapause) mechanisms of Culex pipiens pallens (L.), global protein expression differences at three separate time points represent nondiapause, diapause preparation and overwintering diapause phases of Cx. pipiens pallens were compared using iTRAQ. Cx. pipiens pallens females accumulate more lipid droplets during diapause preparation and overwintering diapause maintenance than during the nondiapause phase. A total of 1030 proteins were identified, among which 1020 were quantified and compared. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), Domain and Clusters of Orthologous Groups (COG) analyses revealed key groups of proteins, pathways and domains differentially regulated during diapause preparation and overwintering diapause maintenance phases in this mosquito, including major shifts in energy production and conversion, fatty acid metabolism, the citrate (TCA) cycle, and the cytoskeletal reorganization pathway. Our results provide novel insight into the molecular bases of diapause in mosquitoes and corroborate previously reported diapause-associated features in invertebrates. More interestingly, the phototransduction pathway exists in Cx. pipiens pallens, in particular, actin, rather than other proteins, appears to have substantial role in diapause regulation. In addition, the differential changes in calmodulin protein expression in each stage implicate its important regulatory role of the Cx. pipiens pallens biological clock. Finally, 24 proteins were selected for verification of differential expression using a parallel reaction monitoring strategy. The findings of this study provide a unique opportunity to explore the molecular modifications underlying diapause in mosquitoes and might therefore enable the future design and development of novel genetic tools for improving management strategies in mosquitoes.
Collapse
Affiliation(s)
- Chongxing Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China.
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Taian, Shandong, 271000, P.R. China.
| | - Dongdong Wei
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Guihong Shi
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Xiaoli Huang
- Shanghai MHelix BioTech Co., Ltd., 271000, Shanghai, P.R. China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Gongzhen Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Lijuan Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Huaiwei Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Feng Miao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, 272033, P.R. China.
| |
Collapse
|
13
|
Doellman MM, Egan SP, Ragland GJ, Meyers PJ, Hood GR, Powell THQ, Lazorchak P, Hahn DA, Berlocher SH, Nosil P, Feder JL. Standing geographic variation in eclosion time and the genomics of host race formation in Rhagoletis pomonella fruit flies. Ecol Evol 2019; 9:393-409. [PMID: 30680122 PMCID: PMC6342182 DOI: 10.1002/ece3.4758] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Taxa harboring high levels of standing variation may be more likely to adapt to rapid environmental shifts and experience ecological speciation. Here, we characterize geographic and host-related differentiation for 10,241 single nucleotide polymorphisms in Rhagoletis pomonella fruit flies to infer whether standing genetic variation in adult eclosion time in the ancestral hawthorn (Crataegus spp.)-infesting host race, as opposed to new mutations, contributed substantially to its recent shift to earlier fruiting apple (Malus domestica). Allele frequency differences associated with early vs. late eclosion time within each host race were significantly related to geographic genetic variation and host race differentiation across four sites, arrayed from north to south along a 430-km transect, where the host races co-occur in sympatry in the Midwest United States. Host fruiting phenology is clinal, with both apple and hawthorn trees fruiting earlier in the North and later in the South. Thus, we expected alleles associated with earlier eclosion to be at higher frequencies in northern populations. This pattern was observed in the hawthorn race across all four populations; however, allele frequency patterns in the apple race were more complex. Despite the generally earlier eclosion timing of apple flies and corresponding apple fruiting phenology, alleles on chromosomes 2 and 3 associated with earlier emergence were paradoxically at lower frequency in the apple than hawthorn host race across all four sympatric sites. However, loci on chromosome 1 did show higher frequencies of early eclosion-associated alleles in the apple than hawthorn host race at the two southern sites, potentially accounting for their earlier eclosion phenotype. Thus, although extensive clinal genetic variation in the ancestral hawthorn race exists and contributed to the host shift to apple, further study is needed to resolve details of how this standing variation was selected to generate earlier eclosing apple fly populations in the North.
Collapse
Affiliation(s)
| | - Scott P. Egan
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Advanced Diagnostics and Therapeutics InitiativeUniversity of Notre DameNotre DameIndiana
- Department of BiosciencesRice UniversityHoustonTexas
| | - Gregory J. Ragland
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Environmental Change InitiativeUniversity of Notre DameNotre DameIndiana
- Department of Integrative BiologyUniversity of Colorado–DenverDenverColorado
| | - Peter J. Meyers
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
| | - Glen R. Hood
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Department of Biological SciencesWayne State UniversityDetroitMichigan
| | - Thomas H. Q. Powell
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Department of Biological SciencesState University of New York–BinghamtonBinghamtonNew York
| | - Peter Lazorchak
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Department of Computer ScienceJohns Hopkins UniversityBaltimoreMaryland
| | - Daniel A. Hahn
- Department of Entomology and NematologyUniversity of FloridaGainesvilleFlorida
| | - Stewart H. Berlocher
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Patrik Nosil
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Jeffrey L. Feder
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Advanced Diagnostics and Therapeutics InitiativeUniversity of Notre DameNotre DameIndiana
- Environmental Change InitiativeUniversity of Notre DameNotre DameIndiana
| |
Collapse
|
14
|
Yocum GD, Childers AK, Rinehart JP, Rajamohan A, Pitts-Singer TL, Greenlee KJ, Bowsher JH. Environmental history impacts gene expression during diapause development in the alfalfa leafcutting bee, Megachile rotundata. J Exp Biol 2018; 221:jeb.173443. [DOI: 10.1242/jeb.173443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
Our understanding of the mechanisms controlling insect diapause has increased dramatically with the introduction of global gene expression techniques, such as RNA-seq. However, little attention has been given to how ecologically relevant field conditions may affect gene expression during diapause development because previous studies have focused on laboratory reared and maintained insects. To determine whether gene expression differs between laboratory and field conditions, prepupae of the alfalfa leafcutting bee, Megachile rotundata, entering diapause early or late in the growing season were collected. These two groups were further subdivided in early autumn into laboratory and field maintained groups, resulting in four experimental treatments of diapausing prepupae: early and late field, and early and late laboratory. RNA-seq and differential expression analyses were performed on bees from the four treatment groups in November, January, March and May. The number of treatment-specific differentially expressed genes (97 to 1249) outnumbered the number of differentially regulated genes common to all four treatments (14 to 229), indicating that exposure to laboratory or field conditions had a major impact on gene expression during diapause development. Principle component analysis and hierarchical cluster analysis yielded similar grouping of treatments, confirming that the treatments form distinct clusters. Our results support the conclusion that gene expression during the course of diapause development is not a simple ordered sequence, but rather a highly plastic response determined primarily by the environmental history of the individual insect.
Collapse
Affiliation(s)
- George D. Yocum
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - Anna K. Childers
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
| | | | - Arun Rajamohan
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | | | | | - Julia H. Bowsher
- Biological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
15
|
Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc Natl Acad Sci U S A 2017; 114:8532-8537. [PMID: 28720705 DOI: 10.1073/pnas.1707281114] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insects often overcome unfavorable seasons in a hormonally regulated state of diapause during which their activity ceases, development is arrested, metabolic rate is suppressed, and tolerance of environmental stress is bolstered. Diapausing insects pass through a stereotypic succession of eco-physiological phases termed "diapause development." The phasing is varied in the literature, and the whole concept is sometimes criticized as being too artificial. Here we present the results of transcriptional profiling using custom microarrays representing 1,042 genes in the drosophilid fly, Chymomyza costata Fully grown, third-instar larvae programmed for diapause by a photoperiodic (short-day) signal were assayed as they traversed the diapause developmental program. When analyzing the gradual dynamics in the transcriptomic profile, we could readily distinguish distinct diapause developmental phases associated with induction/initiation, maintenance, cold acclimation, and termination by cold or by photoperiodic signal. Accordingly, each phase is characterized by a specific pattern of gene expression, supporting the physiological relevance of the concept of diapause phasing. Further, we have dissected in greater detail the changes in transcript levels of elements of several signaling pathways considered critical for diapause regulation. The phase of diapause termination is associated with enhanced transcript levels in several positive elements stimulating direct development (the 20-hydroxyecdysone pathway: Ecr, Shd, Broad; the Wnt pathway: basket, c-jun) that are countered by up-regulation in some negative elements (the insulin-signaling pathway: Ilp8, PI3k, Akt; the target of rapamycin pathway: Tsc2 and 4EBP; the Wnt pathway: shaggy). We speculate such up-regulations may represent the early steps linked to termination of diapause programming.
Collapse
|
16
|
Tan QQ, Liu W, Zhu F, Lei CL, Hahn DA, Wang XP. Describing the Diapause-Preparatory Proteome of the Beetle Colaphellus bowringi and Identifying Candidates Affecting Lipid Accumulation Using Isobaric Tags for Mass Spectrometry-Based Proteome Quantification (iTRAQ). Front Physiol 2017; 8:251. [PMID: 28491041 PMCID: PMC5405119 DOI: 10.3389/fphys.2017.00251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 04/10/2017] [Indexed: 11/23/2022] Open
Abstract
Prior to entering diapause, insects must prepare themselves physiologically to withstand the stresses of arresting their development for a lengthy period. While studies describing the biochemical and cellular milieu of the maintenance phase of diapause are accumulating, few studies have taken an “omics” approach to describing molecular events during the diapause preparatory phase. We used isobaric tags and mass spectrometry (iTRAQ) to quantitatively compare the expression profiles of proteins identified during the onset of diapause preparation phase in the heads of adult female cabbage beetles, Colaphellus bowringi. A total of 3,175 proteins were identified, 297 of which were differentially expressed between diapause-destined and non-diapause-destined female adults and could therefore be involved in diapause preparation in this species. Comparison of identified proteins with protein function databases shows that many of these differentially expressed proteins enhanced in diapause destined beetles are involved in energy production and conversion, carbohydrate metabolism and transport, and lipid metabolism. Further hand annotation of differentially abundant peptides nominates several associated with stress hardiness, including HSPs and antioxidants, as well as neural development. In contrast, non-diapause destined beetles show substantial increases in cuticle proteins, suggesting additional post-emergence growth. Using RNA interference to silence a fatty acid-binding protein (FABP) that was highly abundant in the head of diapause-destined females prevented the accumulation of lipids in the fat body, a common product of diapause preparation in this species and others. Surprisingly, RNAi against the FABP also affected the transcript abundance of several heat shock proteins. These results suggest that the identified differentially expressed proteins that play vital roles in lipid metabolism may also contribute somehow to enhanced hardiness to environmental stress that is characteristic of diapause.
Collapse
Affiliation(s)
- Qian-Qian Tan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Wen Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Fen Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of FloridaGainesville, FL, USA
| | - Xiao-Ping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|