1
|
McKeown CR, Ta AC, Marshall CL, McLain NJ, Archuleta KJ, Cline HT. X-Tracker: Automated Analysis of Xenopus Tadpole Visual Avoidance Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617688. [PMID: 39416226 PMCID: PMC11482948 DOI: 10.1101/2024.10.10.617688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Xenopus laevis tadpoles exhibit an avoidance behavior when they encounter a moving visual stimulus. A visual avoidance event occurs when a moving object approaches the eye of a free-swimming animal at an approximately 90-degree angle and the animal turns in response to the encounter. Analysis of this behavior requires tracking both the free-swimming animal and the moving visual stimulus both prior to and after the encounter. Previous automated tracking software does not discriminate the moving animal from the moving stimulus, requiring time-consuming manual analysis. Here we present X-Tracker, an automated behavior tracking code that can detect and discriminate moving visual stimuli and free-swimming animals and score encounters and avoidance events. X-Tracker is as accurate as human analysis without the human time commitment. We also present software improvements to our previous visual stimulus presentation and image capture that optimize videos for automated analysis, and hardware improvements that increase the number of animal-stimulus encounters. X-Tracker is a high throughput, unbiased, and significant time-saving analysis system that will greatly facilitate visual avoidance behavior analysis of Xenopus laevis tadpoles, and potentially other free-swimming organisms. The tool is available at https://github.com/ClineLab/Tadpole-Behavior-Automation.
Collapse
Affiliation(s)
| | - Aaron C Ta
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | | | | | | | - Hollis T Cline
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
2
|
Kesner P, Schohl A, Warren EC, Ma F, Ruthazer ES. Postsynaptic and Presynaptic NMDARs Have Distinct Roles in Visual Circuit Development. Cell Rep 2021; 32:107955. [PMID: 32726620 DOI: 10.1016/j.celrep.2020.107955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/26/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
To study contributions of N-methyl-D-aspartate receptors (NMDARs) in presynaptic and postsynaptic neurons of the developing visual system, we microinject antisense Morpholino oligonucleotide (MO) against GluN1 into one cell of two-cell-stage Xenopus laevis embryos. The resulting bilateral segregation of MO induces postsynaptic NMDAR (postNMDAR) knockdown in tectal neurons on one side and presynaptic NMDAR (preNMDAR) knockdown in ganglion cells projecting to the other side. PostNMDAR knockdown reduces evoked NMDAR- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated retinotectal currents. Although the frequency of spontaneous synaptic events is increased, the probability of evoked release is reduced. PreNMDAR knockdown results in larger evoked and unitary synaptic responses. Structurally, postNMDAR and preNMDAR knockdown produce complementary effects. Axonal arbor complexity is reduced by preNMDAR-MO and increased by postNMDAR-MO, whereas tectal dendritic arbors exhibit the inverse. The current study illustrates distinct roles for pre- and postNMDARs in circuit development and reveals extensive transsynaptic regulation of form and function.
Collapse
Affiliation(s)
- Philip Kesner
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Anne Schohl
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Elodie C Warren
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Fan Ma
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Edward S Ruthazer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada.
| |
Collapse
|
3
|
Williams MC, Patel JH, Kakebeen AD, Wills AE. Nutrient availability contributes to a graded refractory period for regeneration in Xenopus tropicalis. Dev Biol 2021; 473:59-70. [PMID: 33484704 DOI: 10.1016/j.ydbio.2021.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/17/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
Xenopus tadpoles are a unique model for regeneration in that they exhibit two distinct phases of age-specific regenerative competence. In Xenopus laevis, young tadpoles fully regenerate following major injuries such as tail transection, then transiently lose regenerative competence during the "refractory period" from stages 45-47. Regenerative competence is then regained in older tadpoles before being permanently lost during metamorphosis. Here we show that a similar refractory period exists in X. tropicalis. Notably, tadpoles lose regenerative competence gradually in X. tropicalis, with full regenerative competence lost at stage 47. We find that the refractory period coincides closely with depletion of maternal yolk stores and the onset of independent feeding, and so we hypothesized that it might be caused in part by nutrient stress. In support of this hypothesis, we find that cell proliferation declines throughout the tail as the refractory period approaches. When we block nutrient mobilization by inhibiting mTOR signaling, we find that tadpole growth and regeneration are reduced, while yolk stores persist. Finally, we are able to restore regenerative competence and cell proliferation during the refractory period by abundantly feeding tadpoles. Our study argues that nutrient stress contributes to lack of regenerative competence and introduces the X. tropicalis refractory period as a valuable new model for interrogating how metabolic constraints inform regeneration.
Collapse
Affiliation(s)
| | - Jeet H Patel
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Anneke D Kakebeen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Massey MD, Hutchings JA. Thermal variability during ectotherm egg incubation: A synthesis and framework. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:59-71. [PMID: 32767534 DOI: 10.1002/jez.2400] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Natural populations of ectothermic oviparous vertebrates typically experience thermal variability in their incubation environment. Yet an overwhelming number of laboratory studies incubate animals under constant thermal conditions that cannot capture natural thermal variability. Here, we systematically searched for studies that incubated eggs of ectothermic vertebrates, including both fishes and herpetofauna, under thermally variable regimes. We ultimately developed a compendium of 66 studies that used thermally variable conditions for egg incubation. In this review, we qualitatively discuss key findings from literature in the compendium, including the phenotypic effects resulting from different patterns of thermally variable incubation, as well as the ontogenetic persistence of these effects. We also describe a physiological framework for contextualizing some of these effects, based on thermal performance theory. Lastly, we highlight key gaps in our understanding of thermally variable incubation and offer suggestions for future studies.
Collapse
Affiliation(s)
- Melanie D Massey
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeffrey A Hutchings
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Flødevigen Marine Research Station, Institute of Marine Research, Bergen, Norway.,Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
5
|
Hunt JE, Bruno JR, Pratt KG. An Innate Color Preference Displayed by Xenopus Tadpoles Is Persistent and Requires the Tegmentum. Front Behav Neurosci 2020; 14:71. [PMID: 32477078 PMCID: PMC7235192 DOI: 10.3389/fnbeh.2020.00071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/20/2020] [Indexed: 11/26/2022] Open
Abstract
Many animals, especially those that develop externally, are equipped with innate color preferences that promote survival. For example, Xenopus tadpoles are known to phototax most robustly towards mid-spectrum (“green”) wavelengths of light while avoiding shorter (“blue”) wavelengths. The innate preference to phototax towards green likely promotes survival by guiding the tadpoles to green aquatic plants—their source of both food and safety. Here, we characterize the dynamics and circuitry that give rise to this intriguing hard-wired behavior. Using a novel open-field experimental paradigm we found that free-swimming tadpoles indeed spend most of their time in the green portion of the test dish, whether green is pitted against white (brighter than green) or black (darker than green). This preference was modest yet incredibly persistent over time, which, according to the shell game model of predator-prey interactions, minimizes being found by the predator. Furthermore, we found that this innate preference for the color green was experience-independent, and manifested mainly via profoundly slower swimming speeds while in the green region of the test dish. Ablation experiments showed that, at the circuit level, the color-guided swimming behavior requires the tegmentum, but not the optic tectum (OT). Lastly, we determined that exposing tadpoles to the selective serotonin reuptake inhibitor (SSRI) trazodone switched the tadpoles’ preference from color-based to luminance-based, implicating two distinct visual circuits in the tadpole, one that is associated with color-driven behaviors, another associated with luminance-driven behaviors.
Collapse
Affiliation(s)
- Jasper Elan Hunt
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, WY, United States.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - John Rudolph Bruno
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, WY, United States
| | - Kara Geo Pratt
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
6
|
Burggren WW. Phenotypic Switching Resulting From Developmental Plasticity: Fixed or Reversible? Front Physiol 2020; 10:1634. [PMID: 32038303 PMCID: PMC6987144 DOI: 10.3389/fphys.2019.01634] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022] Open
Abstract
The prevalent view of developmental phenotypic switching holds that phenotype modifications occurring during critical windows of development are "irreversible" - that is, once produced by environmental perturbation, the consequent juvenile and/or adult phenotypes are indelibly modified. Certainly, many such changes appear to be non-reversible later in life. Yet, whether animals with switched phenotypes during early development are unable to return to a normal range of adult phenotypes, or whether they do not experience the specific environmental conditions necessary for them to switch back to the normal range of adult phenotypes, remains an open question. Moreover, developmental critical windows are typically brief, early periods punctuating a much longer period of overall development. This leaves open additional developmental time for reversal (correction) of a switched phenotype resulting from an adverse environment early in development. Such reversal could occur from right after the critical window "closes," all the way into adulthood. In fact, examples abound of the capacity to return to normal adult phenotypes following phenotypic changes enabled by earlier developmental plasticity. Such examples include cold tolerance in the fruit fly, developmental switching of mouth formation in a nematode, organization of the spinal cord of larval zebrafish, camouflage pigmentation formation in larval newts, respiratory chemosensitivity in frogs, temperature-metabolism relations in turtles, development of vascular smooth muscle and kidney tissue in mammals, hatching/birth weight in numerous vertebrates,. More extreme cases of actual reversal (not just correction) occur in invertebrates (e.g., hydrozoans, barnacles) that actually 'backtrack' along normal developmental trajectories from adults back to earlier developmental stages. While developmental phenotypic switching is often viewed as a permanent deviation from the normal range of developmental plans, the concept of developmental phenotypic switching should be expanded to include sufficient plasticity allowing subsequent correction resulting in the normal adult phenotype.
Collapse
Affiliation(s)
- Warren W. Burggren
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
7
|
McKeown CR, Cline HT. Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors. Development 2019; 146:146/20/dev178871. [PMID: 31649012 DOI: 10.1242/dev.178871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/05/2019] [Indexed: 01/23/2023]
Abstract
Nutrient status affects brain development; however, the effects of nutrient availability on neural progenitor cell proliferation in vivo are poorly understood. Without food, Xenopus laevis tadpoles enter a period of stasis during which neural progenitor proliferation is drastically reduced, but resumes when food becomes available. Here, we investigate how neural progenitors halt cell division in response to nutrient restriction and subsequently re-enter the cell cycle upon feeding. We demonstrate that nutrient restriction causes neural progenitors to arrest in G2 of the cell cycle with increased DNA content, and that nutrient availability triggers progenitors to re-enter the cell cycle at M phase. Initiation of the nutrient restriction-induced G2 arrest is rapamycin insensitive, but cell cycle re-entry requires mTOR. Finally, we show that activation of insulin receptor signaling is sufficient to increase neural progenitor cell proliferation in the absence of food. A G2 arrest mechanism provides an adaptive strategy to control brain development in response to nutrient availability by triggering a synchronous burst of cell proliferation when nutrients become available. This may be a general cellular mechanism that allows developmental flexibility during times of limited resources.
Collapse
Affiliation(s)
| | - Hollis T Cline
- Department of Neuroscience, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|