1
|
Gower DJ, Fleming JF, Pisani D, Vonk FJ, Kerkkamp HMI, Peichl L, Meimann S, Casewell NR, Henkel CV, Richardson MK, Sanders KL, Simões BF. Eye-Transcriptome and Genome-Wide Sequencing for Scolecophidia: Implications for Inferring the Visual System of the Ancestral Snake. Genome Biol Evol 2021; 13:6430116. [PMID: 34791190 PMCID: PMC8643396 DOI: 10.1093/gbe/evab253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular genetic data have recently been incorporated in attempts to reconstruct the ecology of the ancestral snake, though this has been limited by a paucity of data for one of the two main extant snake taxa, the highly fossorial Scolecophidia. Here we present and analyze vision genes from the first eye-transcriptomic and genome-wide data for Scolecophidia, for Anilios bicolor, and A. bituberculatus, respectively. We also present immunohistochemistry data for retinal anatomy and visual opsin-gene expression in Anilios. Analyzed in the context of 19 lepidosaurian genomes and 12 eye transcriptomes, the new genome-wide and transcriptomic data provide evidence for a much more reduced visual system in Anilios than in non-scolecophidian (=alethinophidian) snakes and in lizards. In Anilios, there is no evidence of the presence of 7 of the 12 genes associated with alethinophidian photopic (cone) phototransduction. This indicates extensive gene loss and many of these candidate gene losses occur also in highly fossorial mammals with reduced vision. Although recent phylogenetic studies have found evidence for scolecophidian paraphyly, the loss in Anilios of visual genes that are present in alethinophidians implies that the ancestral snake had a better-developed visual system than is known for any extant scolecophidian.
Collapse
Affiliation(s)
- David J Gower
- Life Sciences, The Natural History Museum, London, United Kingdom
| | - James F Fleming
- School of Life Sciences, University of Bristol, Bristol, United Kingdom.,Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Davide Pisani
- School of Life Sciences, University of Bristol, Bristol, United Kingdom.,School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Freek J Vonk
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Leo Peichl
- Institute of Cellular and Molecular Anatomy, Dr. Senckenberg Anatomy, Goethe University Frankfurt, Frankfurt am Main, Germany.,Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sonja Meimann
- Institute of Cellular and Molecular Anatomy, Dr. Senckenberg Anatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christiaan V Henkel
- Institute of Biology, University of Leiden, Leiden, The Netherlands.,Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Kate L Sanders
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Bruno F Simões
- School of Life Sciences, University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
2
|
Cangiano L, Asteriti S. Interphotoreceptor coupling: an evolutionary perspective. Pflugers Arch 2021; 473:1539-1554. [PMID: 33988778 PMCID: PMC8370920 DOI: 10.1007/s00424-021-02572-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
In the vertebrate retina, signals generated by cones of different spectral preference and by highly sensitive rod photoreceptors interact at various levels to extract salient visual information. The first opportunity for such interaction is offered by electrical coupling of the photoreceptors themselves, which is mediated by gap junctions located at the contact points of specialised cellular processes: synaptic terminals, telodendria and radial fins. Here, we examine the evolutionary pressures for and against interphotoreceptor coupling, which are likely to have shaped how coupling is deployed in different species. The impact of coupling on signal to noise ratio, spatial acuity, contrast sensitivity, absolute and increment threshold, retinal signal flow and colour discrimination is discussed while emphasising available data from a variety of vertebrate models spanning from lampreys to primates. We highlight the many gaps in our knowledge, persisting discrepancies in the literature, as well as some major unanswered questions on the actual extent and physiological role of cone-cone, rod-cone and rod-rod communication. Lastly, we point toward limited but intriguing evidence suggestive of the ancestral form of coupling among ciliary photoreceptors.
Collapse
Affiliation(s)
- Lorenzo Cangiano
- Dept. of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy.
| | - Sabrina Asteriti
- Dept. of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy
| |
Collapse
|
3
|
Foveal shape, ultrastructure and photoreceptor composition in yellow-legged gull, Larus michahellis (Naumann, 1840). ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-020-00512-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
de Oliveira Garcia D, Estrela GC, Soares RTG, Paulino D, Jorge AT, Rodrigues MA, de Castro Sasahara TH, Dos Santos Honsho C. A study on the morphoquantitative and cytological characteristics of the bulbar conjunctiva of the maned wolf (Chrysocyon brachyurus; Illiger, 1815). Anat Histol Embryol 2020; 50:439-447. [PMID: 33340413 DOI: 10.1111/ahe.12647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022]
Abstract
The maned wolf, Chrysocyon brachyurus, is a near-threatened carnivore inhabiting the Brazilian Cerrado. Few studies have been conducted on this species, and even fewer have explored its ophthalmological characteristics. Vision is critical to wild canids; thus, this study aimed to provide a morphoquantitative description of the bulbar conjunctiva of the maned wolf using cytological and histological analyses. Ten healthy maned wolves from a conservational centre, including 4 females and 6 males aged 1-12 years (6.5 ± 2.8), were included in the study. The samples for cytological analysis were collected from the inferior conjunctival sac using a cytobrush, and conjunctival tissue was collected for histological analysis from the temporal canthus zone. The cytological samples were stained using the Papanicolaou method, and the histological sections were stained using haematoxylin and eosin, Periodic acid-Schiff, picrosirius red and Masson's trichrome stains. The cytological samples were studied for stain quality, and the different cell types were counted. Histological examination was used to determine tissue types in the conjunctiva and their proportions. Analyses revealed a stratified squamous epithelium with some goblet cells and eventual pigmentation in the basal layer. Loose connective tissue with the presence of some mononuclear and polymorphonuclear cells was also observed. The epithelium of the maned wolf's bulbar conjunctiva resembles that of dogs and other carnivore species; furthermore, its physiological and pathological responses were similar to those of other carnivore species.
Collapse
|
5
|
Miller AH, Davis HR, Luong AM, Do QH, Pham CT, Ziegler T, Lee JL, De Queiroz K, Reynolds RG, Nguyen TQ. Discovery of a New Species of Enigmatic Odd-Scaled Snake (Serpentes: Xenodermidae: Achalinus) from Ha Giang Province, Vietnam. COPEIA 2020. [DOI: 10.1643/ch2020060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Aryeh H. Miller
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013; (AHM) ; (JLL) ; and (KdQ) . Send reprint requests to AHM
| | - Hayden R. Davis
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085
| | - Anh Mai Luong
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam; (AML) ; (QHD) ; (CTP) ; and (TQN) nqt2@yaho
| | - Quyen Hanh Do
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam; (AML) ; (QHD) ; (CTP) ; and (TQN) nqt2@yaho
| | - Cuong The Pham
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam; (AML) ; (QHD) ; (CTP) ; and (TQN) nqt2@yaho
| | - Thomas Ziegler
- AG Zoologischer Garten Köln, Riehler Strasse 173, D-50735 Cologne, Germany;
| | - Justin L. Lee
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013; (AHM) ; (JLL) ; and (KdQ) . Send reprint requests to AHM
| | - Kevin De Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013; (AHM) ; (JLL) ; and (KdQ) . Send reprint requests to AHM
| | - R. Graham Reynolds
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, North Carolina 28804; (RGR)
| | - Truong Quang Nguyen
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam; (AML) ; (QHD) ; (CTP) ; and (TQN) nqt2@yaho
| |
Collapse
|
6
|
Seiko T, Kishida T, Toyama M, Hariyama T, Okitsu T, Wada A, Toda M, Satta Y, Terai Y. Visual adaptation of opsin genes to the aquatic environment in sea snakes. BMC Evol Biol 2020; 20:158. [PMID: 33243140 PMCID: PMC7690139 DOI: 10.1186/s12862-020-01725-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary transitions from terrestrial to aquatic life history cause drastic changes in sensory systems. Indeed, the drastic changes in vision have been reported in many aquatic amniotes, convergently. Recently, the opsin genes of the full-aquatic sea snakes have been reported. However, those of the amphibious sea snakes have not been examined in detail. RESULTS Here, we investigated opsin genes and visual pigments of sea snakes. We determined the sequences of SWS1, LWS, and RH1 genes from one terrestrial, three amphibious and four fully-aquatic elapids. Amino acid replacements at four and one spectra-tuning positions were found in LWS and RH1, respectively. We measured or predicted absorption of LWS and RH1 pigments with A1-derived retinal. During their evolution, blue shifts of LWS pigments have occurred stepwise in amphibious sea snakes and convergently in both amphibious and fully-aquatic species. CONCLUSIONS Blue shifted LWS pigments may have adapted to deep water or open water environments dominated by blue light. The evolution of opsins differs between marine mammals (cetaceans and pinnipeds) and sea snakes in two fundamental ways: (1) pseudogenization of opsins in marine mammals; and (2) large blue shifts of LWS pigments in sea snakes. It may be possible to explain these two differences at the level of photoreceptor cell composition given that cone and rod cells both exist in mammals whereas only cone cells exist in fully-aquatic sea snakes. We hypothesize that the differences in photoreceptor cell compositions may have differentially affected the evolution of opsins in divergent amniote lineages.
Collapse
Affiliation(s)
- Takashi Seiko
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193 Japan
| | - Takushi Kishida
- Wildlife Research Center, Kyoto University, 2-24 Tanaka Sekiden-cho, Sakyo, Kyoto 606-8203 Japan
| | - Mina Toyama
- Department of Biology, Faculty of Medicine, Hamamatsu University School of Medicine, Handayama, Hamamatsu Japan
| | - Takahiko Hariyama
- Department of Biology, Faculty of Medicine, Hamamatsu University School of Medicine, Handayama, Hamamatsu Japan
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada, Kobe, 658-8558 Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada, Kobe, 658-8558 Japan
| | - Mamoru Toda
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213 Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193 Japan
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193 Japan
| |
Collapse
|
7
|
Oel AP, Neil GJ, Dong EM, Balay SD, Collett K, Allison WT. Nrl Is Dispensable for Specification of Rod Photoreceptors in Adult Zebrafish Despite Its Deeply Conserved Requirement Earlier in Ontogeny. iScience 2020; 23:101805. [PMID: 33299975 PMCID: PMC7702016 DOI: 10.1016/j.isci.2020.101805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor NRL (neural retina leucine zipper) has been canonized as the master regulator of photoreceptor cell fate in the retina. NRL is necessary and sufficient to specify rod cell fate and to preclude cone cell fate in mice. By engineering zebrafish, we tested if NRL function has conserved roles beyond mammals or beyond nocturnal species, i.e., in a vertebrate possessing a greater and more typical diversity of cone sub-types. Transgenic expression of Nrl from zebrafish or mouse was sufficient to induce rod photoreceptor cells. Zebrafish nrl−/− mutants lacked rods (and had excess UV-sensitive cones) as young larvae; thus, the conservation of Nrl function between mice and zebrafish appears sound. Strikingly, however, rods were abundant in adult nrl−/− null mutant zebrafish. Rods developed in adults despite Nrl protein being undetectable. Therefore, a yet-to-be-revealed non-canonical pathway independent of Nrl is able to specify the fate of some rod photoreceptors. Nrl is conserved and sufficient to specify rod photoreceptors in the zebrafish retina Nrl is necessary for rod photoreceptors in early ontogeny of zebrafish larvae Zebrafish Nrl is functionally conserved with mouse and human NRL Remarkably, Nrl is dispensable for rod specification in adult zebrafish
Collapse
Affiliation(s)
- A Phillip Oel
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Gavin J Neil
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Emily M Dong
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Spencer D Balay
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Keon Collett
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada.,Department of Medical Genetics, University of Alberta, Edmonton AB, T6G 2R3, Canada
| |
Collapse
|
8
|
Simões BF, Gower DJ, Rasmussen AR, Sarker MAR, Fry GC, Casewell NR, Harrison RA, Hart NS, Partridge JC, Hunt DM, Chang BS, Pisani D, Sanders KL. Spectral Diversification and Trans-Species Allelic Polymorphism during the Land-to-Sea Transition in Snakes. Curr Biol 2020; 30:2608-2615.e4. [PMID: 32470360 DOI: 10.1016/j.cub.2020.04.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/05/2020] [Accepted: 04/23/2020] [Indexed: 11/16/2022]
Abstract
Snakes are descended from highly visual lizards [1] but have limited (probably dichromatic) color vision attributed to a dim-light lifestyle of early snakes [2-4]. The living species of front-fanged elapids, however, are ecologically very diverse, with ∼300 terrestrial species (cobras, taipans, etc.) and ∼60 fully marine sea snakes, plus eight independently marine, amphibious sea kraits [1]. Here, we investigate the evolution of spectral sensitivity in elapids by analyzing their opsin genes (which are responsible for sensitivity to UV and visible light), retinal photoreceptors, and ocular lenses. We found that sea snakes underwent rapid adaptive diversification of their visual pigments when compared with their terrestrial and amphibious relatives. The three opsins present in snakes (SWS1, LWS, and RH1) have evolved under positive selection in elapids, and in sea snakes they have undergone multiple shifts in spectral sensitivity toward the longer wavelengths that dominate below the sea surface. Several relatively distantly related Hydrophis sea snakes are polymorphic for shortwave sensitive visual pigment encoded by alleles of SWS1. This spectral site polymorphism is expected to confer expanded "UV-blue" spectral sensitivity and is estimated to have persisted twice as long as the predicted survival time for selectively neutral nuclear alleles. We suggest that this polymorphism is adaptively maintained across Hydrophis species via balancing selection, similarly to the LWS polymorphism that confers allelic trichromacy in some primates. Diving sea snakes thus appear to share parallel mechanisms of color vision diversification with fruit-eating primates.
Collapse
Affiliation(s)
- Bruno F Simões
- University of Plymouth, School of Biological and Marine Sciences, Drake Circus, Plymouth PL4 8AA, United Kingdom; University of Bristol, School of Biological Sciences and School of Earth Sciences, Tyndall Avenue, Bristol BS8 1TG, United Kingdom; The University of Adelaide, School of Biological Sciences, North Terrace, Adelaide, South Australia 5005, Australia.
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Arne R Rasmussen
- The Royal Danish Academy of Fine Arts, School of Architecture, Design and Conservation, Philip de Langes Allé, 1435 Copenhagen K, Denmark
| | - Mohammad A R Sarker
- University of Dhaka, Department of Zoology, Curzon Hall Campus, Dhaka 1000, Bangladesh
| | - Gary C Fry
- CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, Queensland 4072, Australia
| | - Nicholas R Casewell
- Liverpool School of Tropical Medicine, Centre for Snakebite Research & Interventions, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Robert A Harrison
- Liverpool School of Tropical Medicine, Centre for Snakebite Research & Interventions, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Nathan S Hart
- Macquarie University, Department of Biological Sciences, North Ryde, Sydney, New South Wales 2109, Australia
| | - Julian C Partridge
- The University of Western Australia, Oceans Institute, Crawley, Perth, Western Australia 6009, Australia
| | - David M Hunt
- The University of Western Australia, School of Biological Sciences, Crawley, Perth, Western Australia 6009, Australia; The Lions Eye Institute, Centre for Ophthalmology and Visual Science, Nedlands, Perth, Western Australia 6009, Australia
| | - Belinda S Chang
- University of Toronto, Departments of Ecology & Evolutionary, Cell & Systems Biology, Willcocks Street, Toronto M5S 3G5, Canada
| | - Davide Pisani
- University of Bristol, School of Biological Sciences and School of Earth Sciences, Tyndall Avenue, Bristol BS8 1TG, United Kingdom
| | - Kate L Sanders
- The University of Adelaide, School of Biological Sciences, North Terrace, Adelaide, South Australia 5005, Australia; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| |
Collapse
|
9
|
Canei J, Burtea C, Nonclercq D. Comparative study of the visual system of two psammophilic lizards (Scincus scincus &Eumeces schneideri). Vision Res 2020; 171:17-30. [PMID: 32360540 DOI: 10.1016/j.visres.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022]
Abstract
Sand deserts are common biotopes on the earth's surface. Some specialized vertebrate species have colonized these ecological habitats by living buried in the sand. Among these so called psammophilic species are the Scincidae sand dune living species Scincus scincus and Eumeces schneideri. These two skinks share a relatively similar behavioral ecology by living buried in sand, almost all the time for S. scincus and at least for some part of the day for E. schneideri. The visual system of these two lizards was investigated by histological, immunohistochemical, Magnetic Resonance Imaging (MRI) and morphometric techniques. Both skink species exhibit a retina lacking fovea, composed predominantly of cones presenting two types of oil droplets (pale blue-green and colorless). Both species possess a subset of rod like-photoreceptors (about 1 rod for 30 cones) evidenced by anti-rhodopsin immunoreactivity. A ratio 1:1-1:2 between ganglion cells and photoreceptors points to a linear connection (photoreceptors/bipolar neurons/ganglion cells) in the retina and indicates that both skinks more likely possess good visual acuity, even in the peripheral retina. The MRI analysis revealed differences between the species concerning the eye structures, with a more spherical eye shape for S. scincus, as well as a more flattened lens. The relative lens diameter of both species seems to correspond to a rather photopic pattern. Beside the fact that S. scincus and E. schneideri have different lifestyles, their visual capacities seem similar, and, generally speaking, these two psammophilic species theoretically exhibit visual capacities not far away from non-fossorial species.
Collapse
Affiliation(s)
- Jérôme Canei
- Laboratory of Histology, Biosciences Institute, Faculty of Medicine and Pharmacy, University of Mons, 23, Place du Parc, B-7000 Mons, Belgium
| | - Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, B-7000 Mons, Belgium
| | - Denis Nonclercq
- Laboratory of Histology, Biosciences Institute, Faculty of Medicine and Pharmacy, University of Mons, 23, Place du Parc, B-7000 Mons, Belgium.
| |
Collapse
|
10
|
Seleem AA. Immunohistochemical localization of alpha-synuclein in the retina of some nocturnal and diurnal animals. Biotech Histochem 2020; 95:360-372. [PMID: 31951746 DOI: 10.1080/10520295.2019.1703218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Although alpha-synuclein has been reported to participate in neurodegenerative diseases, the actual normal biological function of alpha-synuclein remains unclear. I investigated the correlation of alpha-synuclein expression with nocturnal and diurnal activity for various species. Hematoxylin and eosin staining, periodic acid-Schiff's reaction (PAS) and immunohistochemistry of alpha-synuclein expression were performed for the retinas of diurnal, nocturnal, nocturnal with diurnal activity species. I found different intensity of alpha-synuclein expression in the retinal layers. I found alpha-synuclein expression in the outer segment of the photoreceptor layer in the diurnal studied species and absence of alpha-synuclein expression in the compartments of photoreceptor layer in the retina of nocturnal species. I found localization of alpha-synuclein in the inner and outer segments of photoreceptors of the retina of nocturnal with diurnal activity species. The retinas of diurnal animals exhibited glycogen in the paraboloid structure in the inner segment of the photoreceptor layer. The retinas of nocturnal and nocturnal with diurnal activity species were devoid of glycogen in the photoreceptor layer. I conclude that the function of alpha-synuclein is more related to diurnal than to nocturnal species.
Collapse
Affiliation(s)
- Amin A Seleem
- Amin A. Seleem, Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt and Biology Department, Faculty of Science and Arts, Alula, Taibah University, Kingdom Saudi Arabia
| |
Collapse
|
11
|
Katti C, Stacey-Solis M, Coronel-Rojas NA, Davies WIL. The Diversity and Adaptive Evolution of Visual Photopigments in Reptiles. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
12
|
Schott RK, Bhattacharyya N, Chang BS. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes. Evolution 2019; 73:1958-1971. [DOI: 10.1111/evo.13810] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ryan K. Schott
- Department of Ecology and Evolutionary BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Current Address: Department of Vertebrate Zoology, National Museum of Natural HistorySmithsonian Institution 10th and Constitution Ave NW Washington DC 20560‐0162
| | - Nihar Bhattacharyya
- Department of Cell and Systems BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Current Address: UCL Institute of Ophthalmology 11–43 Bath Street London EC1V 9EL United Kingdom
| | - Belinda S.W. Chang
- Department of Ecology and Evolutionary BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Department of Cell and Systems BiologyUniversity of Toronto Toronto Ontario M5S 3G5 Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of Toronto Toronto Ontario M5S 3B2 Canada
| |
Collapse
|
13
|
Hauzman E, Kalava V, Bonci DMO, Ventura DF. Characterization of the melanopsin gene (Opn4x) of diurnal and nocturnal snakes. BMC Evol Biol 2019; 19:174. [PMID: 31462236 PMCID: PMC6714106 DOI: 10.1186/s12862-019-1500-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A number of non-visual responses to light in vertebrates, such as circadian rhythm control and pupillary light reflex, are mediated by melanopsins, G-protein coupled membrane receptors, conjugated to a retinal chromophore. In non-mammalian vertebrates, melanopsin expression is variable within the retina and extra-ocular tissues. Two paralog melanopsin genes were classified in vertebrates, Opn4x and Opn4m. Snakes are highly diversified vertebrates with a wide range of daily activity patterns, which raises questions about differences in structure, function and expression pattern of their melanopsin genes. In this study, we analyzed the melanopsin genes expressed in the retinas of 18 snake species from three families (Viperidae, Elapidae, and Colubridae), and also investigated extra-retinal tissue expression. RESULTS Phylogenetic analysis revealed that the amplified gene belongs to the Opn4x group, and no expression of the Opn4m was found. The same paralog is expressed in the iris, but no extra-ocular expression was detected. Molecular evolutionary analysis indicated that melanopsins are evolving primarily under strong purifying selection, although lower evolutionary constraint was detected in snake lineages (ω = 0.2), compared to non-snake Opn4x and Opn4m (ω = 0.1). Statistical analysis of selective constraint suggests that snake phylogenetic relationships have driven stronger effects on melanopsin evolution, than the species activity pattern. In situ hybridization revealed the presence of melanopsin within cells in the outer and inner nuclear layers, in the ganglion cell layer, and intense labeling in the optic nerve. CONCLUSIONS The loss of the Opn4m gene and extra-ocular photosensitive tissues in snakes may be associated with a prolonged nocturnal/mesopic bottleneck in the early history of snake evolution. The presence of melanopsin-containing cells in all retinal nuclear layers indicates a globally photosensitive retina, and the expression in classic photoreceptor cells suggest a regionalized co-expression of melanopsin and visual opsins.
Collapse
Affiliation(s)
- Einat Hauzman
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil. .,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil.
| | | | - Daniela Maria Oliveira Bonci
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| | - Dora Fix Ventura
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - Sala D9. Butantã, São Paulo, SP, 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| |
Collapse
|
14
|
Schott RK, Van Nynatten A, Card DC, Castoe TA, S W Chang B. Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim-Light Ancestry. Mol Biol Evol 2019; 35:1376-1389. [PMID: 29800394 DOI: 10.1093/molbev/msy025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The visual systems of snakes are heavily modified relative to other squamates, a condition often thought to reflect their fossorial origins. Further modifications are seen in caenophidian snakes, where evolutionary transitions between rod and cone photoreceptors, termed photoreceptor transmutations, have occurred in many lineages. Little previous work, however, has focused on the molecular evolutionary underpinnings of these morphological changes. To address this, we sequenced seven snake eye transcriptomes and utilized new whole-genome and targeted capture sequencing data. We used these data to analyze gene loss and shifts in selection pressures in phototransduction genes that may be associated with snake evolutionary origins and photoreceptor transmutation. We identified the surprising loss of rhodopsin kinase (GRK1), despite a low degree of gene loss overall and a lack of relaxed selection early during snake evolution. These results provide some of the first evolutionary genomic corroboration for a dim-light ancestor that lacks strong fossorial adaptations. Our results also indicate that snakes with photoreceptor transmutation experienced significantly different selection pressures from other reptiles. Significant positive selection was found primarily in cone-specific genes, but not rod-specific genes, contrary to our expectations. These results reveal potential molecular adaptations associated with photoreceptor transmutation and also highlight unappreciated functional differences between rod- and cone-specific phototransduction proteins. This intriguing example of snake visual system evolution illustrates how the underlying molecular components of a complex system can be reshaped in response to changing selection pressures.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | | | - Daren C Card
- Department of Biology, University of Texas, Arlington, TX
| | - Todd A Castoe
- Department of Biology, University of Texas, Arlington, TX
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Bittencourt GB, Hauzman E, Bonci DMO, Ventura DF. Photoreceptors morphology and genetics of the visual pigments of Bothrops jararaca and Crotalus durissus terrificus (Serpentes, Viperidae). Vision Res 2019; 158:72-77. [PMID: 30826356 DOI: 10.1016/j.visres.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
Abstract
Snakes inhabit a great variety of habitats, whose spectral quality of light may vary a lot and influence specific adaptations of their visual system. In this study, we investigated the genetics of the visual opsins and the morphology of retinal photoreceptors, of two nocturnal snakes from the Viperidae family, Bothrops jararaca and Crotalus durissus terrificus, which inhabit preferentially the Atlantic Rain Forest and the Brazilian Savannah, respectively. Total RNA was extracted from homogenized retinas and converted to cDNA. The opsin genes expressed in snake retinas, LWS, RH1, and SWS1, were amplified by polymerase chain reactions (PCRs) and sequenced. The absorption peak (λmax) of the opsins were estimated based on amino acids located at specific spectral tuning sites. Photoreceptor cell populations were analyzed using immunohistochemistry with anti-opsin antibodies. Results showed the same morphological cell populations and same opsins absorption peaks, in both viperid species: double and single cones with LWS photopigment and λmax at ∼555 nm; single cones with SWS1 photopigment and λmax at ∼360 nm; and rods with the rhodopsin RH1 photopigment and λmax at ∼500 nm. The results indicate adaptations to nocturnal habit in both species despite the differences in habitat, and the possibility of a dichromatic color vision at photopic conditions.
Collapse
Affiliation(s)
- Guido Barbieri Bittencourt
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| | - Einat Hauzman
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil; Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Daniela Maria Oliveira Bonci
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil; Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Dora Fix Ventura
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil; Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
16
|
Crowe-Riddell JM, Simões BF, Partridge JC, Hunt DM, Delean S, Schwerdt JG, Breen J, Ludington A, Gower DJ, Sanders KL. Phototactic tails: Evolution and molecular basis of a novel sensory trait in sea snakes. Mol Ecol 2019; 28:2013-2028. [PMID: 30767303 DOI: 10.1111/mec.15022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
Abstract
Dermal phototaxis has been reported in a few aquatic vertebrate lineages spanning fish, amphibians and reptiles. These taxa respond to light on the skin of their elongate hind-bodies and tails by withdrawing under cover to avoid detection by predators. Here, we investigated tail phototaxis in sea snakes (Hydrophiinae), the only reptiles reported to exhibit this sensory behaviour. We conducted behavioural tests in 17 wild-caught sea snakes of eight species by illuminating the dorsal surface of the tail and midbody skin using cold white, violet, blue, green and red light. Our results confirmed phototactic tail withdrawal in the previously studied Aipysurus laevis, revealed this trait for the first time in A. duboisii and A. tenuis, and suggested that tail photoreceptors have peak spectral sensitivities between blue and green light (457-514 nm). Based on these results, and an absence of photoresponses in five Aipysurus and Hydrophis species, we tentatively infer that tail phototaxis evolved in the ancestor of a clade of six Aipysurus species (comprising 10% of all sea snakes). Quantifying tail damage, we found that the probability of sustaining tail injuries was not influenced by tail phototactic ability in snakes. Gene profiling showed that transcriptomes of both tail skin and body skin lacked visual opsins but contained melanopsin (opn4x) in addition to key genes of the retinal regeneration and phototransduction cascades. This work suggests that a nonvisual photoreceptor (e.g., Gq rhabdomeric) signalling pathway underlies tail phototaxis, and provides candidate gene targets for future studies of this unusual sensory innovation in reptiles.
Collapse
Affiliation(s)
- Jenna M Crowe-Riddell
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Biology, University of Florida, Gainesville, Florida
| | - Bruno F Simões
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,School of Earth Sciences, University of Bristol, Bristol, UK
| | - Julian C Partridge
- School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | - David M Hunt
- School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia.,Centre for Ophthalmology and Vision Science, Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Steven Delean
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Julian G Schwerdt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - James Breen
- Robinson Research Institute, University of Adelaide, North Adelaide, South Australia, Australia.,Bioinformatics Hub, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Alastair Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Bioinformatics Hub, University of Adelaide, Adelaide, South Australia, Australia
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Coupling of Human Rhodopsin to a Yeast Signaling Pathway Enables Characterization of Mutations Associated with Retinal Disease. Genetics 2018; 211:597-615. [PMID: 30514708 DOI: 10.1534/genetics.118.301733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are crucial sensors of extracellular signals in eukaryotes, with multiple GPCR mutations linked to human diseases. With the growing number of sequenced human genomes, determining the pathogenicity of a mutation is challenging, but can be aided by a direct measurement of GPCR-mediated signaling. This is particularly difficult for the visual pigment rhodopsin-a GPCR activated by light-for which hundreds of mutations have been linked to inherited degenerative retinal diseases such as retinitis pigmentosa. In this study, we successfully engineered, for the first time, activation by human rhodopsin of the yeast mating pathway, resulting in signaling via a fluorescent reporter. We combine this novel assay for rhodopsin light-dependent activation with studies of subcellular localization, and the upregulation of the unfolded protein response in response to misfolded rhodopsin protein. We use these assays to characterize a panel of rhodopsin mutations with known molecular phenotypes, finding that rhodopsin maintains a similar molecular phenotype in yeast, with some interesting differences. Furthermore, we compare our assays in yeast with clinical phenotypes from patients with novel disease-linked mutations. We demonstrate that our engineered yeast strain can be useful in rhodopsin mutant classification, and in helping to determine the molecular mechanisms underlying their pathogenicity. This approach may also be applied to better understand the clinical relevance of other human GPCR mutations, furthering the use of yeast as a tool for investigating molecular mechanisms relevant to human disease.
Collapse
|
18
|
Perry BW, Card DC, McGlothlin JW, Pasquesi GIM, Adams RH, Schield DR, Hales NR, Corbin AB, Demuth JP, Hoffmann FG, Vandewege MW, Schott RK, Bhattacharyya N, Chang BSW, Casewell NR, Whiteley G, Reyes-Velasco J, Mackessy SP, Gamble T, Storey KB, Biggar KK, Passow CN, Kuo CH, McGaugh SE, Bronikowski AM, de Koning APJ, Edwards SV, Pfrender ME, Minx P, Brodie ED, Brodie ED, Warren WC, Castoe TA. Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome. Genome Biol Evol 2018; 10:2110-2129. [PMID: 30060036 PMCID: PMC6110522 DOI: 10.1093/gbe/evy157] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
Colubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes. Analyses of the garter snake and other squamate reptile genomes highlight shifts in repeat element abundance and expansion within snakes, uncover evidence of genes under positive selection, and provide revised neutral substitution rate estimates for squamates. Our identification of Z and W sex chromosome-specific scaffolds provides evidence for multiple origins of sex chromosome systems in snakes and demonstrates the value of this genome for studying sex chromosome evolution. Analysis of gene duplication and loss in visual and olfactory gene families supports a dim-light ancestral condition in snakes and indicates that olfactory receptor repertoires underwent an expansion early in snake evolution. Additionally, we provide some of the first links between secreted venom proteins, the genes that encode them, and their evolutionary origins in a rear-fanged colubrid snake, together with new genomic insight into the coevolutionary arms race between garter snakes and highly toxic newt prey that led to toxin resistance in garter snakes.
Collapse
Affiliation(s)
- Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington
| | - Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | | | - Richard H Adams
- Department of Biology, University of Texas at Arlington, Arlington
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington
| | - Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington
| | - Andrew B Corbin
- Department of Biology, University of Texas at Arlington, Arlington
| | - Jeffery P Demuth
- Department of Biology, University of Texas at Arlington, Arlington
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville
| | - Michael W Vandewege
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia
| | - Nihar Bhattacharyya
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Gareth Whiteley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jacobo Reyes-Velasco
- Department of Biology, University of Texas at Arlington, Arlington.,Department of Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | | | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.,Bell Museum of Natural History, University of Minnesota, Saint Paul, MN, USA
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | | | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - A P Jason de Koning
- Department of Biochemistry and Molecular Biology, Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University
| | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame
| | - Patrick Minx
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis
| | | | | | - Wesley C Warren
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington
| |
Collapse
|
19
|
Hauzman E, Bonci DMO, Suárez-Villota EY, Neitz M, Ventura DF. Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes. BMC Evol Biol 2017; 17:249. [PMID: 29228925 PMCID: PMC5725783 DOI: 10.1186/s12862-017-1110-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/06/2017] [Indexed: 11/10/2022] Open
Abstract
Background Morphological divergences of snake retinal structure point to complex evolutionary processes and adaptations. The Colubridae family has a remarkable variety of retinal structure that can range from all-cone and all-rod to duplex (cone/rod) retinas. To explore whether nocturnal versus diurnal activity is responsible for constraints on molecular evolution and plays a role in visual opsin spectral tuning of colubrids, we carried out molecular evolution analyses of the visual opsin genes LWS, RH1, and SWS1 from 17 species and performed morphological analyses. Results Phylogenetic reconstructions of the RH1 and LWS recovered major clades characterized by primarily diurnal or primarily nocturnal activity patterns, in contrast with the topology for SWS1, which is very similar to the species tree. We found stronger signals of purifying selection along diurnal and nocturnal lineages for RH1 and SWS1, respectively. A blue-shift of the RH1 spectral peak is associated with diurnal habits. Spectral tuning of cone opsins did not differ among diurnal and nocturnal species. Retinas of nocturnal colubrids had many rows of photoreceptor nuclei, with large numbers of rods, labeled by wheat germ agglutinin (WGA), and two types of cones: large cones sensitive to long/medium wavelengths (L/M) and small cones sensitive to ultra-violet/violet wavelengths (UV/VS). In contrast, retinas of diurnal species had only one row of photoreceptor nuclei, with four types of cones: large and double L/M cones, small UV/VS cones, and a second group of small cones, labeled by WGA. Conclusions For LWS gene, selection tests did not confirm different constraints related to activity pattern. For SWS1, stronger purifying selection in nocturnal lineages indicates divergent evolutionary pressures related to the activity pattern, and the importance of the short wavelength sensitivity at low light condition. Activity pattern has a clear influence on the signatures of selection and spectral tuning of RH1, with stronger purifying selection in diurnal lineages, which indicates selective pressure to preserve rhodopsin structure and function in pure-cone retinas. We suggest that the presence of four cone types in primarily diurnal colubrids might be related to the gain of color discrimination capacity. Electronic supplementary material The online version of this article (10.1186/s12862-017-1110-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Hauzman
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes 1721 Bloco A Sala D9 - Butantã, São Paulo, SP, CEP 05508-030, Brazil. .,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil.
| | - D M O Bonci
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes 1721 Bloco A Sala D9 - Butantã, São Paulo, SP, CEP 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| | - E Y Suárez-Villota
- Instituto de Ciencias Marinas y Limnólogicas, Universidad Austral de Chile, Edificio Emilio Pugin, Campus Isla Teja S/N, 5110236, Valdivia, Chile.,Laboratório de Ecologia e Evolução, Instituto Butantan, São Paulo, Brazil
| | - M Neitz
- Department of Opthalmology, University of Washington, 750 Republican Street, Box 358058, Seattle, WA, 98109, USA
| | - D F Ventura
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes 1721 Bloco A Sala D9 - Butantã, São Paulo, SP, CEP 05508-030, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| |
Collapse
|
20
|
Insights into visual pigment adaptation and diversity from model ecological and evolutionary systems. Curr Opin Genet Dev 2017; 47:110-120. [PMID: 29102895 DOI: 10.1016/j.gde.2017.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/18/2017] [Accepted: 09/29/2017] [Indexed: 01/07/2023]
Abstract
Sensory systems provide valuable insight into the evolution of molecular mechanisms underlying organismal anatomy, physiology, and behaviour. Visual pigments, which mediate the first step in visual transduction, offer a unique window into the relationship between molecular variation and visual performance, and enhance our understanding of how ecology, life history, and physiology may shape genetic variation across a variety of organisms. Here we review recent work investigating vertebrate visual pigments from a number of perspectives. Opsin gene duplication, loss, differential expression, structural variation, and the physiological context in which they operate, have profoundly shaped the visual capabilities of vertebrates adapting to novel environments. We note the importance of conceptual frameworks in investigating visual pigment diversity in vertebrates, highlighting key examples including evolutionary transitions between different photic environments, major shifts in life history evolution and ecology, evolutionary innovations in visual system anatomy and physiology, as well as shifts in visually mediated behaviours and behavioural ecology. We emphasize the utility of studying visual pigment evolution in the context of these different perspectives, and demonstrate how the integrative approaches discussed in this review contribute to a better understanding of the underlying molecular processes mediating adaptation in sensory systems, and the contexts in which they occur.
Collapse
|
21
|
Musser JM, Arendt D. Loss and gain of cone types in vertebrate ciliary photoreceptor evolution. Dev Biol 2017; 431:26-35. [DOI: 10.1016/j.ydbio.2017.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 01/09/2023]
|
22
|
Knight K. Colubrid snake eyes converted rods into cones. J Exp Biol 2017. [DOI: 10.1242/jeb.164871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|