1
|
Ivanov D, Mazzoccoli G, Anderson G, Linkova N, Dyatlova A, Mironova E, Polyakova V, Kvetnoy I, Evsyukova I, Carbone A, Nasyrov R. Melatonin, Its Beneficial Effects on Embryogenesis from Mitigating Oxidative Stress to Regulating Gene Expression. Int J Mol Sci 2021; 22:ijms22115885. [PMID: 34070944 PMCID: PMC8198864 DOI: 10.3390/ijms22115885] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Embryogenesis is a complex multi-stage process regulated by various signaling molecules including pineal and extrapineal melatonin (MT). Extrapineal MT is found in the placenta and ovaries, where it carries out local hormonal regulation. MT is necessary for normal development of oocytes, fertilization and subsequent development of human, animal and avian embryos. This review discusses the role of MT as a regulator of preimplantation development of the embryo and its implantation into endometrial tissue, followed by histo-, morpho- and organogenesis. MT possesses pronounced antioxidant properties and helps to protect the embryo from oxidative stress by regulating the expression of the NFE2L2, SOD1, and GPX1 genes. MT activates the expression of the ErbB1, ErbB4, GJA1, POU5F1, and Nanog genes which are necessary for embryo implantation and blastocyst growth. MT induces the expression of vascular endothelial growth factor (VEGF) and its type 1 receptor (VEGF-R1) in the ovaries, activating angiogenesis. Given the increased difficulties in successful fertilization and embryogenesis with age, it is of note that MT slows down ovarian aging by increasing the transcription of sirtuins. MT administration to patients suffering from infertility demonstrates an increase in the effectiveness of in vitro fertilization. Thus, MT may be viewed as a key factor in embryogenesis regulation, including having utility in the management of infertility.
Collapse
Affiliation(s)
- Dmitry Ivanov
- Department of Neonatology, Saint-Petersburg State Pediatric Medical University, Litovskaya Str., 2, 194100 St. Petersburg, Russia; (D.I.); (V.P.); (R.N.)
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (G.M.); (A.C.)
| | - George Anderson
- Department of Clinical Research, CRC Scotland & London, London E14 6JE, UK;
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 St. Petersburg, Russia; (N.L.); (A.D.)
- Department of Therapy, Geriatry and Anti-Aging Medicine, Academy of Postgraduate Education, Federal Medical Biological Agency, 220013 Moscow, Russia
| | - Anastasiia Dyatlova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 St. Petersburg, Russia; (N.L.); (A.D.)
| | - Ekaterina Mironova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 St. Petersburg, Russia; (N.L.); (A.D.)
- Center of Molecular Biomedicine, Saint-Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, 191036 St. Petersburg, Russia;
- Correspondence: ; Tel.: +7-(999)-535-95-88
| | - Victoria Polyakova
- Department of Neonatology, Saint-Petersburg State Pediatric Medical University, Litovskaya Str., 2, 194100 St. Petersburg, Russia; (D.I.); (V.P.); (R.N.)
| | - Igor Kvetnoy
- Center of Molecular Biomedicine, Saint-Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, 191036 St. Petersburg, Russia;
- Department of Pathology, Saint-Petersburg State University, University Embankment, 7/9, 199034 St. Petersburg, Russia
| | - Inna Evsyukova
- Department of Newborns’ Pathology, Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleyevskaya Liniya, 3, 199034 St. Petersburg, Russia;
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (G.M.); (A.C.)
| | - Ruslan Nasyrov
- Department of Neonatology, Saint-Petersburg State Pediatric Medical University, Litovskaya Str., 2, 194100 St. Petersburg, Russia; (D.I.); (V.P.); (R.N.)
| |
Collapse
|
2
|
|
3
|
Liu CH, Chang HM, Yang YS, Lin YT, Ho YJ, Tseng TJ, Lan CT, Li ST, Liao WC. Melatonin Promotes Nerve Regeneration Following End-to-Side Neurorrhaphy by Accelerating Cytoskeletal Remodeling via the Melatonin Receptor-dependent Pathway. Neuroscience 2019; 429:282-292. [PMID: 31689489 DOI: 10.1016/j.neuroscience.2019.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022]
Abstract
Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and β3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as β3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and β3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the β3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway.
Collapse
Affiliation(s)
- Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yin-Shuo Yang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ta Lin
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chyn-Tair Lan
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shao-Ti Li
- Division of Radiation Oncology, Chung Shan University Hospital, Taichung, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Zhao A, Zhao K, Xia Y, Yin Y, Zhu J, Hong H, Li S. Exploring associations of maternal sleep during periconceptional period with congenital heart disease in offspring. Birth Defects Res 2019; 111:920-931. [PMID: 31206252 PMCID: PMC7432175 DOI: 10.1002/bdr2.1536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022]
Abstract
Background In general, the existing evidence points to a role for maternal sleep in pregnancy complications and fetal growth, however, little has been focused on birth defects. We aimed to explore the association between periconceptional poor sleep and the risk of congenital heart disease (CHD), and to examine if daytime napping could to some extent change the association. Methods A case–control study was conducted in Shanghai Children's Medical Center, in which, a total of 524 cases (262 simple CHD vs. 262 severe CHD), along with 262 controls. Results In the multivariable logistic analysis, poor sleep could increase the risk of both simple CHD (OR = 2.486, 95% CI = 1.619–3.818) and severe CHD (OR = 1.950, 95% CI = 1.269–2.997), while routine daytime nap could decrease risk of simple CHD (OR = 0.634, 95% CI = 0.435–0.923). In the stratified analysis, the concurrence with routine daytime nap could weaken the risk of simple CHD caused by poor sleep (OR = 3.183, 95% CI: 1.830–5.537 decreased to OR = 2.236, 95% CI: 1.200–4.165). The examinations were repeated in ventricular septal defect and tetralogy of Fallot, and the established associations can be verified. Moreover, all these findings were also similarly observed in both propensity‐score‐adjusted and propensity‐score‐matched analyses. Conclusions Poor maternal sleep around periconceptional period seems to be an independent risk factor for CHD. The concurrence with daytime nap could to some extent reduce the risk in simple CHD. The results individually and collectively put forward the importance of maternal sleep in embryonic heart development.
Collapse
Affiliation(s)
- Anda Zhao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kena Zhao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanqing Xia
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Yin
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianzhen Zhu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifa Hong
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenghui Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Zhao F, Ma C, Zhao G, Wang G, Li X, Yang K. Rumen-Protected 5-Hydroxytryptophan Improves Sheep Melatonin Synthesis in the Pineal Gland and Intestinal Tract. Med Sci Monit 2019; 25:3605-3616. [PMID: 31091223 PMCID: PMC6534969 DOI: 10.12659/msm.915909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Based on the extensive biological effects of melatonin (MLT), it is beneficial to increase the MLT content in the bodies of animals at a specific physiological stage. This study was conducted to investigate the effect of a diet supplemented with rumen-protected (RP) 5-hydroxytryptophan (5-HTP) on the pineal gland and intestinal tract MLT synthesis of sheep. MATERIAL AND METHODS Eighteen Kazakh sheep were assigned randomly to 3 diet groups: control group (CT, corn-soybean meal basal diet), CT+111 group (111 mg/kg BW RP 5-HTP), and CT+222 group (222 mg/kg BW RP 5-HTP). The gene expressions of aromatic amino acid decarboxylase (AADC), arylalkylamine N-acetyltransferase (AA-NAT), hydroxyindole-O-methyltransferase (HIOMT), monoamine oxidase A (MAOA), and the intermediates of MLT synthesis were observed from the pineal gland and intestinal tract by the reverse transcription (RT)-PCR method. The 5-HTP, 5-HT, N-acetylserotonin (NAS), MLT, and 5-hydroxyindole acetic acid (5-HIAA) contents in the pineal gland and intestinal tract were analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry. RESULTS The study showed that the pineal gland HIOMT expression (P<0.05), MLT (P<0.05) and 5-HIAA (P<0.05) levels in the 222 mg/kg group significantly increased compared to those in the CT and CT+111 mg/kg groups. In addition, the AADC (P<0.01) and AA-NAT (P<0.05) gene expression levels in the duodenum and jejunum were increased by the supplementation of RP 5-HTP. CONCLUSIONS Rumen-protected 5-hydroxytryptophan promoted melatonin synthesis in the pineal gland and intestinal tract during the natural light period.
Collapse
Affiliation(s)
- Fang Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Chen Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Guodong Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Gen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Xiaobin Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|