1
|
Khudyakov JI, Holser RR, Vierra CA, Ly ST, Niel TK, Hasan BM, Crocker DE, Costa DP. Changes in apolipoprotein abundance dominate proteome responses to prolonged fasting in elephant seals. J Exp Biol 2022; 225:274459. [DOI: 10.1242/jeb.243572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/27/2022] [Indexed: 01/10/2023]
Abstract
ABSTRACT
Unlike many animals that reduce activity during fasting, northern elephant seals (NES) undergo prolonged fasting during energy-intensive life-history stages such as reproduction and molting, fueling fasting energy needs by mobilizing fat stores accrued during foraging. NES display several unique metabolic features such as high fasting metabolic rates, elevated blood lipid and high-density lipoprotein (HDL) cholesterol levels, efficient protein sparing and resistance to oxidative stress during fasting. However, the cellular mechanisms that regulate these adaptations are still not fully understood. To examine how metabolic coordination is achieved during prolonged fasting, we profiled changes in blubber, skeletal muscle and plasma proteomes of adult female NES over a 5 week fast associated with molting. We found that while blubber and muscle proteomes were remarkably stable over fasting, over 50 proteins changed in abundance in plasma, including those associated with lipid storage, mobilization, oxidation and transport. Apolipoproteins dominated the blubber, plasma and muscle proteome responses to fasting. APOA4, APOE and APOC3, which are associated with lipogenesis and triglyceride accumulation, decreased, while APOA1, APOA2 and APOM, which are associated with lipid mobilization and HDL function, increased over fasting. Our findings suggest that changes in apolipoprotein composition may underlie the maintenance of high HDL levels and, together with adipokines and hepatokines that facilitate lipid catabolism, may mediate the metabolic transitions between feeding and fasting in NES. Many of these proteins have not been previously studied in this species and provide intriguing hypotheses about metabolic regulation during prolonged fasting in mammals.
Collapse
Affiliation(s)
- Jane I. Khudyakov
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Rachel R. Holser
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| | - Craig A. Vierra
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Serena T. Ly
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Theron K. Niel
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Basma M. Hasan
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Daniel E. Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| | - Daniel P. Costa
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
2
|
Wright TJ, Davis RW, Holser RR, Hückstädt LA, Danesi CP, Porter C, Widen SG, Williams TM, Costa DP, Sheffield-Moore M. Changes in Northern Elephant Seal Skeletal Muscle Following Thirty Days of Fasting and Reduced Activity. Front Physiol 2020; 11:564555. [PMID: 33123026 PMCID: PMC7573231 DOI: 10.3389/fphys.2020.564555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Northern elephant seals (NES, Mirounga angustirostris) undergo an annual molt during which they spend ∼40 days fasting on land with reduced activity and lose approximately one-quarter of their body mass. Reduced activity and muscle load in stereotypic terrestrial mammalian models results in decreased muscle mass and capacity for force production and aerobic metabolism. However, the majority of lost mass in fasting female NES is from fat while muscle mass is largely preserved. Although muscle mass is preserved, potential changes to the metabolic and contractile capacity are unknown. To assess potential changes in NES skeletal muscle during molt, we collected muscle biopsies from 6 adult female NES before the molt and after ∼30 days at the end of the molt. Skeletal muscle was assessed for respiratory capacity using high resolution respirometry, and RNA was extracted to assess changes in gene expression. Despite a month of reduced activity, fasting, and weight loss, skeletal muscle respiratory capacity was preserved with no change in OXPHOS respiratory capacity. Molt was associated with 162 upregulated genes including those favoring lipid metabolism. We identified 172 downregulated genes including those coding for ribosomal proteins and genes associated with skeletal muscle force transduction and glucose metabolism. Following ∼30 days of molt, NES skeletal muscle metabolic capacity is preserved although mechanotransduction may be compromised. In the absence of exercise stimulus, fasting-induced shifts in muscle metabolism may stimulate pathways associated with preserving the mass and metabolic capacity of slow oxidative muscle.
Collapse
Affiliation(s)
- Traver J Wright
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Randall W Davis
- Department of Marine Biology, Texas A&M University, Galveston, TX, United States
| | - Rachel R Holser
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Luis A Hückstädt
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Christopher P Danesi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Craig Porter
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Terrie M Williams
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Daniel P Costa
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Melinda Sheffield-Moore
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
3
|
Pujade Busqueta L, Crocker DE, Champagne CD, McCormley MC, Deyarmin JS, Houser DS, Khudyakov JI. A blubber gene expression index for evaluating stress in marine mammals. CONSERVATION PHYSIOLOGY 2020; 8:coaa082. [PMID: 32904591 PMCID: PMC7456562 DOI: 10.1093/conphys/coaa082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Evaluating the impacts of anthropogenic disturbance on free-ranging marine mammal populations, many of which are in decline, requires robust diagnostic markers of physiological stress and health. However, circulating levels of canonical 'stress hormones' such as glucocorticoids, which are commonly used to evaluate animal health, do not capture the complexity of species-specific responses and cannot be easily measured in large, fully aquatic marine mammals. Alternatively, expression of stress-responsive genes in hormone target tissues such as blubber, the specialized subcutaneous adipose tissue that can be manually or remotely sampled from many marine mammals, may be a more informative and sensitive indicator of recent (within 24 h) exposure to stressors. We previously identified genes that were upregulated in the inner blubber of juvenile northern elephant seals during experimental stimulation of the hypothalamic-pituitary-adrenal axis. In this study, we measured baseline expression levels of a subset of these genes in inner blubber of unmanipulated juvenile elephant seals of varying physiological states and correlated them with other stress markers (body condition index, corticosteroid and thyroid hormone levels). Expression of 10 genes, including those associated with lipid metabolism (ACSL1, HMGCS2, CDO1), redox homeostasis (GPX3), adipokine signaling (ADIPOQ), lipid droplet formation (PLIN1, CIDEA) and adipogenesis (DKK1, AZGP1, TGFBI), was described by three principal components and was associated with cortisol and thyroid hormone levels. Significantly, baseline gene expression levels were predictive of circulating hormone levels, suggesting that these markers may be potential indicators of exposure to stressors in marine mammal species that are inaccessible for blood sampling. A similar approach may be used to identify species-specific stress markers in other tissues that can be sampled by remote biopsy dart from free-ranging marine mammals, such as outer blubber and skin.
Collapse
Affiliation(s)
- Laura Pujade Busqueta
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Daniel E Crocker
- Biology Department, Sonoma State University, Rohnert Park, CA 94928, USA
| | | | - Molly C McCormley
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Jared S Deyarmin
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | | | - Jane I Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
- National Marine Mammal Foundation, San Diego, CA 92106, USA
| |
Collapse
|
4
|
Adaptation of blind cavefish to nutrient poor environments: uncovering diverse new mechanisms that regulate body fat levels. Dev Biol 2020; 463:99-100. [PMID: 30738814 DOI: 10.1016/j.ydbio.2019.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 11/23/2022]
|
5
|
Khudyakov JI, Abdollahi E, Ngo A, Sandhu G, Stephan A, Costa DP, Crocker DE. Expression of obesity-related adipokine genes during fasting in a naturally obese marine mammal. Am J Physiol Regul Integr Comp Physiol 2019; 317:R521-R529. [DOI: 10.1152/ajpregu.00182.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Northern elephant seals ( Mirounga angustirostris) are exceptional among fasting-adapted animals in coupling prolonged fasting with energetically costly activities, relying on oxidation of fat stores accrued during foraging to power metabolic demands of reproduction and molting. We hypothesized that high rates of energy expenditure, insulin resistance, and immune responses to colonial breeding in fasting seals are mediated by adipokines, or signaling molecules secreted by adipose tissue that are associated with obesity and inflammation in humans. We measured mRNA expression of 10 adipokine genes in blubber tissue of adult female elephant seals sampled early and late during their lactation and molting fasts and correlated gene expression with adiposity and circulating levels of corticosteroid and immune markers. Expression of adiponectin ( ADIPOQ) and its receptor ADIPOR2, leptin receptor ( LEPR), resistin ( RETN), retinol binding protein 4 ( RBP4), and visfatin/nicotinamide phosphoribosyltransferase ( NAMPT) was increased, whereas that of fat mass and obesity-associated protein ( FTO) was decreased in late-fasted compared with early-fasted groups. Abundance of adipokine transcripts that increased in late fasting was negatively associated with body mass and positively associated with cortisol, suggesting that they may mediate local metabolic effects of cortisol in blubber during fasting. Expression of several adipokines was correlated with the immune markers IL-6, haptoglobin, IgM, and IgE, suggesting a potential role in modulating immune responses to colonial breeding and molting. Since many of these adipokines have not been measured in other wild animals, this study provides preliminary insights into their local regulation in fat tissue and targeted assays for future studies.
Collapse
Affiliation(s)
- Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, California
- National Marine Mammal Foundation, San Diego, California
| | - Eileen Abdollahi
- Department of Biological Sciences, University of the Pacific, Stockton, California
| | - Angela Ngo
- Department of Biological Sciences, University of the Pacific, Stockton, California
| | - Gureet Sandhu
- Department of Biological Sciences, University of the Pacific, Stockton, California
| | - Alicia Stephan
- Department of Biological Sciences, University of the Pacific, Stockton, California
| | - Daniel P. Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California
| | - Daniel E. Crocker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California
| |
Collapse
|