1
|
Míguez S, Torre I, Arrizabalaga A, Freixas L. Influences of Maternal Weight and Geographic Factors on Offspring Traits of the Edible Dormouse in the NE of the Iberian Peninsula. Life (Basel) 2023; 13:life13051223. [PMID: 37240868 DOI: 10.3390/life13051223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The main goal of this study was to analyze the reproductive patterns of edible dormouse (Glis glis) populations in the northeast of the Iberian Peninsula using an 18-year period of data obtained from nest boxes collected between 2004 and 2021. The average litter size in Catalonia (Spain) was 5.5 ± 1.60 (range: 2-9, n = 131), with litter sizes between 5 and 7 pups as the more frequent. The overall mean weight in pink, grey and open eyes pups was 4.8 g/pup, 11.7 g/pup and 23.6 g/pup, respectively. No differences in offspring weights between sexes were found in any of the three age groups. Maternal body weight was positively associated with mean pup weight, whereas no correlation between the weight of the mothers and litter size was found. The trade-off between offspring number and size was not detected at birth. Regarding litter size variation across the geographic gradient (and their climatic gradient associated) from the southernmost populations of the Iberian Peninsula located in Catalonia to the Pyrenees region in Andorra, no evidence to suggest that geographic variables affect litter size was found, discarding (1) an investment in larger litters to compensate shorter seasons related to higher altitudes or northern latitudes, and (2) variation in litter size related to weather changes (e.g., temperature and precipitation) along latitudinal and/or altitudinal gradients.
Collapse
Affiliation(s)
| | - Ignasi Torre
- BiBio Research Group, Natural Sciences Museum of Granollers, C/Francesc Macià 51, E-08402 Granollers, Spain
| | - Antoni Arrizabalaga
- BiBio Research Group, Natural Sciences Museum of Granollers, C/Francesc Macià 51, E-08402 Granollers, Spain
| | - Lídia Freixas
- BiBio Research Group, Natural Sciences Museum of Granollers, C/Francesc Macià 51, E-08402 Granollers, Spain
| |
Collapse
|
2
|
Ruf T, Bieber C. Why hibernate? Predator avoidance in the edible dormouse. MAMMAL RES 2022; 68:1-11. [PMID: 36624745 PMCID: PMC9816287 DOI: 10.1007/s13364-022-00652-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
We address the question of ultimate selective advantages of hibernation. Biologists generally seem to accept the notion that multiday torpor is primarily a response to adverse environmental conditions, namely cold climate and low food abundance. We closely examine hibernation, and its summer equivalent estivation, in the edible dormouse, Glis glis. We conclude that in this species, hibernation is not primarily driven by poor conditions. Dormice enter torpor with fat reserves in years that are unfavourable for reproduction but provide ample food supply for animals to sustain themselves and even gain body energy reserves. While staying in hibernacula below ground, hibernators have much higher chances of survival than during the active season. We think that dormice enter prolonged torpor predominantly to avoid predation, mainly nocturnal owls. Because estivation in summer is immediately followed by hibernation, this strategy requires a good body condition in terms of fat reserves. As dormice age, they encounter fewer occasions to reproduce when calorie-rich seeds are available late in the year, and phase advance the hibernation season. By early emergence from hibernation, the best territories can be occupied and the number of mates maximised. However, this advantage comes at the cost of increased predation pressure that is maximal in spring. We argue the predator avoidance is generally one of the primary reasons for hibernation, as increased perceived predation pressure leads to an enhanced torpor use. The edible dormouse may be just an example where this behaviour becomes most obvious, on the population level and across large areas.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
3
|
Havenstein N, Langer F, Weiler U, Stefanski V, Fietz J. Bridging environment, physiology and life history: Stress hormones in a small hibernator. Mol Cell Endocrinol 2021; 533:111315. [PMID: 34052302 DOI: 10.1016/j.mce.2021.111315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Our knowledge of the perception of stress and its implications for animals in the wild is limited, especially in regard to mammals. The aim of this study was therefore to identify sex specific effects of reproductive activity, body mass, food availability and hibernation on stress hormone levels in the edible dormouse (Glis glis), a small mammalian hibernator. Results of our study reveal that reproductive activity and pre-hibernation fattening were associated with high cortisol levels in both sexes. During the mating season, in particular individuals with low body masses had higher stress levels. Elevated levels of cortisol during pre-hibernation fattening were even higher in females that had formerly invested into reproduction compared to non-reproductive females. Previously observed impairments on health parameters and reduced survival rates associated with reproduction emphasize the functional relevance of high stress hormone levels for fitness. Prolonged food limitation, however, did not affect stress levels demonstrating the ability of dormice to predict and cope with food restriction.
Collapse
Affiliation(s)
- Nadine Havenstein
- Institute of Biology, Dep. Zoology, University of Hohenheim, Stuttgart, Germany; Institute of Behavioral Physiology of Livestock, University of Hohenheim, Stuttgart, Germany
| | - Franz Langer
- Institute of Biology, Dep. Zoology, University of Hohenheim, Stuttgart, Germany; Institute of Behavioral Physiology of Livestock, University of Hohenheim, Stuttgart, Germany
| | - Ulrike Weiler
- Institute of Behavioral Physiology of Livestock, University of Hohenheim, Stuttgart, Germany
| | - Volker Stefanski
- Institute of Behavioral Physiology of Livestock, University of Hohenheim, Stuttgart, Germany
| | - Joanna Fietz
- Institute of Biology, Dep. Zoology, University of Hohenheim, Stuttgart, Germany; Institute of Behavioral Physiology of Livestock, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
4
|
Navarro-Castilla Á, Garrido M, Hawlena H, Barja I. Non-Invasive Monitoring of Adrenocortical Activity in Three Sympatric Desert Gerbil Species. Animals (Basel) 2021; 11:ani11010075. [PMID: 33406630 PMCID: PMC7824156 DOI: 10.3390/ani11010075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this era, characterized by remarkable anthropogenic impacts on wildlife, it is crucial to monitor the health of wild animal populations while minimizing the interference to them. To this end, for a better understanding of the eco-physiology of wild animals, the adrenocortical activity can be non-invasively evaluated by measuring glucocorticoid metabolites excreted in feces. However, to ensure that the endocrine information is reliable, the experimental assays should be first validated and the causes for the major variability among individuals should be considered. Here we validated an enzyme immunoassay for measuring fecal corticosterone metabolites (FCM) in three wild gerbil species and emphasized the differences among them. These are endangered species, which play a key role in psammophilic communities, and provide a model system for various aspects in ecology. Thus, this work constitutes the first step toward using the FCMs of these species as indicators for individual and community stress. Abstract The study of the endocrine status can be useful to understand wildlife responses to the changing environment. Here, we validated an enzyme immunoassay (EIA) to non-invasively monitor adrenocortical activity by measuring fecal corticosterone metabolites (FCM) in three sympatric gerbil species (Gerbillus andersoni, G. gerbillus and G. pyramidum) from the Northwestern Negev Desert’s sands (Israel). Animals included into treatment groups were injected with adrenocorticotropic hormone (ACTH) to stimulate adrenocortical activity, while control groups received a saline solution. Feces were collected at different intervals and FCM were quantified by an EIA. Basal FCM levels were similar in the three species. The ACTH effect was evidenced, but the time of FCM peak concentrations appearance differed between the species (6–24 h post-injection). Furthermore, FCM peak values were observed sooner in G. andersoni females than in males (6 h and 18 h post-injection, respectively). G. andersoni and G. gerbillus males in control groups also increased FCM levels (18 h and 48 h post-injection, respectively). Despite the small sample sizes, our results confirmed the EIA suitability for analyzing FCM in these species as a reliable indicator of the adrenocortical activity. This study also revealed that close species, and individuals within a species, can respond differently to the same stressor.
Collapse
Affiliation(s)
- Álvaro Navarro-Castilla
- Etho-Physiology Group, Unit of Zoology, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain;
- Correspondence:
| | - Mario Garrido
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 849900, Israel;
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 849900, Israel;
| | - Isabel Barja
- Etho-Physiology Group, Unit of Zoology, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain;
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Autonomous University of Madrid, C/Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
5
|
Ruf T, Bieber C. Physiological, Behavioral, and Life-History Adaptations to Environmental Fluctuations in the Edible Dormouse. Front Physiol 2020; 11:423. [PMID: 32431626 PMCID: PMC7214925 DOI: 10.3389/fphys.2020.00423] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/07/2020] [Indexed: 11/22/2022] Open
Abstract
The edible dormouse (Glis glis, formerly Myoxus glis) is a small arboreal mammal inhabiting deciduous forests in Europe. This rodent shows behavioral and physiological adaptations to three types of environmental fluctuations: (i) predictable seasonal variation in climate and food resources (ii) unpredictable year-to-year fluctuation in seed-production by trees and (iii) day-to-day variation in ambient temperature and precipitation. They cope with seasonally fluctuating conditions by seasonal fattening and hibernation. Dormice have adjusted to tree-mast fluctuations, i.e., pulsed resources, by sensing future seed availability in spring, and restricting reproduction to years with at least some seed production by beech and oak trees, which are a crucial food-resource for fast-growing juveniles in fall. Finally, dormice respond to short-term drops in ambient temperature by increased use of daily torpor as well as by huddling in groups of up to 24 conspecifics. These responses to environmental fluctuations strongly interact with each other: Dormice are much more prone to using daily torpor and huddling in non-reproductive years, because active gonads can counteract torpor and energy requirements for reproduction may prevent the sharing of food resources associated with huddling. Accordingly, foraging activity in fall is much more intense in reproductive mast years. Also, depending on their energy reserves, dormice may retreat to underground burrows in the summers of non-reproductive years, causing an extension of the hibernation season to up to 11.4 months. In addition to these interactions, responses to environmental fluctuations are modulated by the progression of life-history stages. With increasing age and diminishing chances of future reproduction, females reproduce with increasing frequency even under suboptimal environmental conditions. Simultaneously, older dormice shorten the hibernation season and phase-advance the emergence from hibernation in spring, apparently to occupy good breeding territories early, despite increased predation risk above ground. All of the above adaptions, i.e., huddling, torpor, hibernation, and reproduction skipping do not merely optimize energy-budgets but also help to balance individual predation risk against reproductive success, which adds another layer of complexity to the ability to make flexible adjustments in this species.
Collapse
Affiliation(s)
- Thomas Ruf
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Bieber
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|