1
|
Xiao X, Zhao W, Shao Y, Hu C, Liu J, Zhang G, Yang F, Zhao J, Fu Y, Li L, Wang MQ, Zhou A. Environmental exposure to cadmium induces olfactory neurotoxicity in fire ants and the molecular basis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124945. [PMID: 39265771 DOI: 10.1016/j.envpol.2024.124945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Cadmium (Cd) exhibits widely olfactory toxicity to animals. We previously reported that Cd exposure induces the transcriptional dysregulation of olfactory marker proteins (OMPs) of the red imported fire ant Solenopsis invicta. However, it is still unclear how environmental Cd exposure-induced deregulation of OMPs affects the olfactory signal transduction and olfaction-driven social behavior of S. invicta. Here, we showed that S. invicta displayed dull sensory perception on bait in Cd-contaminated areas and dietary Cd ingestion by S. invicta reduced the bait search efficiency. We hypothesize that deregulation of OMPs by Cd exposure blocks the olfactory signal transduction in fire ants. Our results indicated the odor binding protein 14 (SiOBP14) was consistently inhibited in antennal sensilla of fire ants across Cd exposure at 0.5, 5 and 50 mg/kg. Function analysis in vitro and in vivo demonstrated that SiOBP14 is essential in perception of S. invicta to bait odorants. Cd-exposed fire ants showed weak odorant receptor neurons (ORNs) chemosensory signaling and electroantennogram (EAG) response. Moreover, Cd exposure repeals the preference of S. invicta to the active bait odorants, including 2-methyltetrahydrofuran-3-one, 2-methyl-3-furanthiol and 4,5-dimethylthiazole, and even triggers a behavioral transition from preference to repellence. These results indicate that Cd exposure inhibits the specific OMP expression and disrupts olfactory signal transduction, thereby inducing dull sensory perception of S. invicta to bait odorants. The findings provide new implications for monitoring and control of agricultural insect pests in heavy metal polluted areas.
Collapse
Affiliation(s)
- Xiaohui Xiao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenzhen Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yikang Shao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changyuan Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinlong Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoqing Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuxiang Yang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhao
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yueguan Fu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Lei Li
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aiming Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Alonso Á, Llandres-Díez MC, Cruces-Estepa P. Contrasting behavioural responses to concurrent stressors in an aquatic snail: the importance of stress type and combination. ECOTOXICOLOGY (LONDON, ENGLAND) 2024:10.1007/s10646-024-02835-y. [PMID: 39565533 DOI: 10.1007/s10646-024-02835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Behaviour is a fundamental parameter for understanding the animal fitness, serving as an indicator of exposure to stressors. In ecosystems, animals often face multiple stressors simultaneously. Their behavioural responses may vary when exposed to individual stressors, whilst synergistic, additive, or antagonistic effects can result from the interaction of multiple stressors. Therefore, it is imperative to conduct studies that take into account the common occurrence of multi-stress scenarios in aquatic ecosystems. We tested the effects of three sources of stress (acidity (A), toxicity with acetone (T) and conspecific chemical cues (S)) on the behaviour of the aquatic snail Potamopyrgus antipodarum (Tateidae, Mollusca). We evaluated the impact of each stressor, as well as in combinations of two or three stressors simultaneously. The highest time to initiate movement was shown by the animals of the low water pH (A) followed by those exposed to the combination of low water pH and acetone exposure (AT). The differences between the time to initiate movement of each treatment with control revealed a marked decrease in the differences for the snails from the conspecific chemical cues (S) and ST treatments, which mean a higher time to initiate movements. It is concluded that behaviour varied depending on the source and combination of stress. While an acid environment and conspecific signals had contrasting effects when applied separately, their simultaneous exposure resulted in no significant impact. This highlights the importance of considering the combined effects of multiple stressors when extrapolating laboratory results to real-world scenarios, where organisms are often exposed to more than one stressor at a time.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego s/n, 28801, Alcalá de Henares, Madrid, Spain.
| | - M C Llandres-Díez
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego s/n, 28801, Alcalá de Henares, Madrid, Spain
| | - P Cruces-Estepa
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego s/n, 28801, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
3
|
Rubio P, Loy I, Pellón R. Some properties of habituation of siphon withdrawal in the slimy clam (Ruditapes decussatus). Behav Processes 2024; 222:105100. [PMID: 39284375 DOI: 10.1016/j.beproc.2024.105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
A first approximation to the study of learning processes in bivalves is presented. A habituation procedure was developed using the slimy clam Ruditapes decussatus. The percentage of siphon withdrawal when they were exposed to a white light was measured. In Experiment 1, a habituation-discrimination procedure was used to study the stimulus intensity effect (350-lm vs 806 lm). Clams exposed to 350-lm showed a faster habituation than those exposed to 806-lm. Experiment 2 studied the effect of stimulus and intertrial interval (ITI) duration using a 2×2 design. Trials lasted 20 or 180 seconds, and the ITI lasted 5 or 10 minutes. A combined effect of these two parameters was obtained. Habituation was faster in clams exposed to 180-sec trials with a 5-min ITI. Finally, in Experiment 3 clams were trained with five blocks of five trials with a 5-min ITI. Groups differed on trial duration (20 or 180 s). The results showed a general spontaneous recovery effect that was more pronounced for the 180 s group. Also, it was found in this experimental condition a reduced response 24 hours after finishing training (long-term habituation). Altogether, this series of experiments constitutes a first systematic demonstration of habituation in bivalves.
Collapse
Affiliation(s)
- Pablo Rubio
- Departamento de Psicología Básica, Universidad Autónoma de Madrid, C/ Ivan Pavlov 6, Madrid 28049, Spain.
| | - Ignacio Loy
- Departamento de Psicología, Universidad de Oviedo, Plaza de Feijoo s/n, Oviedo 33003, Spain
| | - Ricardo Pellón
- Departamento de Psicología Básica I, Universidad Nacional de Educación a Distancia (UNED), C/Juan del Rosal 10, Ciudad Universitaria, Madrid 28040, Spain
| |
Collapse
|
4
|
Derby CD, Caprio J. What are olfaction and gustation, and do all animals have them? Chem Senses 2024; 49:bjae009. [PMID: 38422390 DOI: 10.1093/chemse/bjae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 03/02/2024] Open
Abstract
Different animals have distinctive anatomical and physiological properties to their chemical senses that enhance detection and discrimination of relevant chemical cues. Humans and other vertebrates are recognized as having 2 main chemical senses, olfaction and gustation, distinguished from each other by their evolutionarily conserved neuroanatomical organization. This distinction between olfaction and gustation in vertebrates is not based on the medium in which they live because the most ancestral and numerous vertebrates, the fishes, live in an aquatic habitat and thus both olfaction and gustation occur in water and both can be of high sensitivity. The terms olfaction and gustation have also often been applied to the invertebrates, though not based on homology. Consequently, any similarities between olfaction and gustation in the vertebrates and invertebrates have resulted from convergent adaptations or shared constraints during evolution. The untidiness of assigning olfaction and gustation to invertebrates has led some to recommend abandoning the use of these terms and instead unifying them and others into a single category-chemical sense. In our essay, we compare the nature of the chemical senses of diverse animal types and consider their designation as olfaction, oral gustation, extra-oral gustation, or simply chemoreception. Properties that we have found useful in categorizing chemical senses of vertebrates and invertebrates include the nature of peripheral sensory cells, organization of the neuropil in the processing centers, molecular receptor specificity, and function.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
5
|
Trethewy M, Mayer-Pinto M, Dafforn KA. Urban shading and artificial light at night alter natural light regimes and affect marine intertidal assemblages. MARINE POLLUTION BULLETIN 2023; 193:115203. [PMID: 37392591 DOI: 10.1016/j.marpolbul.2023.115203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Urban development in many coastal cities has resulted in altered natural light regimes, with many coastal habitats being artificially shaded during the daytime by built structures such as seawalls and piers, while artificial light emitted from buildings and associated infrastructure creates pollution at night. As a result, these habitats may experience changes to community structure and impacts on key ecological processes such as grazing. This study investigated how changes to light regimes affect the abundance of grazers on natural and artificial intertidal habitats in Sydney Harbour, Australia. We also examined whether differences in patterns of responses to shading or artificial light at night (ALAN) varied across different areas within the Harbour, characterised by different overall levels of urbanisation. As predicted, light intensity was greater during the daytime on rocky shores than seawalls at the more urbanised sites of the harbour. We found a negative relationship between the abundance of grazers and increasing light during the daytime on rocky shores (inner harbour) and seawalls (outer harbour). We found similar patterns at night on rocky shores, with a negative relationship between the abundance of grazers and light. However, on seawalls, grazer abundances increased with increasing night-time lux levels, but this was mainly driven by one site. Overall, we found the opposite patterns for algal cover. Our findings corroborate those of previous studies that found that urbanisation can significantly affect natural light cycles, with consequences to ecological communities.
Collapse
Affiliation(s)
- Megan Trethewy
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Mariana Mayer-Pinto
- Centrefor Marine Science and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Katherine A Dafforn
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
6
|
Gefaell J, Galindo J, Rolán‐Alvarez E. Shell color polymorphism in marine gastropods. Evol Appl 2023; 16:202-222. [PMID: 36793692 PMCID: PMC9923496 DOI: 10.1111/eva.13416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Marine gastropods are characterized by an incredible variation in shell color. In this review, we aim to introduce researchers to previous studies of shell color polymorphism in this group of animals, trying to provide an overview of the topic and highlighting some potential avenues for future research. For this, we tackle the different aspects of shell color polymorphism in marine gastropods: its biochemical and genetic basis, its patterns of spatial and temporal distribution, as well as its potential evolutionary causes. In particular, we put special emphasis on the evolutionary studies that have been conducted so far to reveal the evolutionary mechanisms responsible for the maintenance of shell color polymorphism in this group of animals, as it constitutes the least addressed aspect in existing literature reviews. Several general conclusions can be drawn from our review: First, natural selection is commonly involved in the maintenance of gastropod color polymorphism; second, although the contribution of neutral forces (gene flow-genetic drift equilibrium) to shell color polymorphism maintenance do not seem to be particularly important, it has rarely been studied systematically; third, a relationship between shell color polymorphism and mode of larval development (related to dispersal capability) may exist. As for future studies, we suggest that a combination of both classical laboratory crossing experiments and -Omics approaches may yield interesting results on the molecular basis of color polymorphism. We believe that understanding the various causes of shell color polymorphism in marine gastropods is of great importance not only to understand how biodiversity works, but also for protecting such biodiversity, as knowledge of its evolutionary causes may help implement conservation measures in those species or ecosystems that are threatened.
Collapse
Affiliation(s)
- Juan Gefaell
- Departamento de BioquímicaGenética e InmunologíaCentro de Investigación MariñaUniversidade de VigoVigoSpain
| | - Juan Galindo
- Departamento de BioquímicaGenética e InmunologíaCentro de Investigación MariñaUniversidade de VigoVigoSpain
| | - Emilio Rolán‐Alvarez
- Departamento de BioquímicaGenética e InmunologíaCentro de Investigación MariñaUniversidade de VigoVigoSpain
| |
Collapse
|
7
|
Identification and characterization of olfactory receptor genes and olfactory perception in rapa whelk Rapana venosa (Valenciennes, 1846) during larval settlement and metamorphosis. Gene 2022; 825:146403. [PMID: 35306113 DOI: 10.1016/j.gene.2022.146403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/13/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022]
Abstract
The rapa whelk Rapana venosa, an economically important marine fishery resource in China but a major invader all over the world, changes from a phytophagous to a carnivorous form following settlement and metamorphosis. However, the low settlement and metamorphosis rates (<1%) of larvae limit the abundance of R. venosa. This critical step (settlement and metamorphosis) remains poorly characterized but may be related to how larvae perceive the presence of shellfish, their new source of food. Here, we report that larvae may use olfactory perception to sense shellfish. Olfactory receptor (OR) genes are involved in odor sensing in animals. We identified a total of 463 OR genes, which could be grouped into nine clades based on phylogenetic analysis. When assessing the attraction of larvae at different developmental stages to oyster odor, R. venosa showed active settlement and metamorphosis behavior only at the J4 stage (competent larva, 1000-1500 μm shell length) and in the presence of shellfish odor at the same time. Expression of OR gene family members differed between stage 2 (four-spiral whorl stage) and stage 1 (single- to three-spiral whorl stage), indicating significant changes in the olfactory system during larval development. These findings broaden our understanding of olfactory perception, settlement, and metamorphosis in gastropods and can be used to improve R. venosa harvesting, as well as the sustainable development and utilization of this resource.
Collapse
|
8
|
Alonso Á, Gómez-de-Prado G, Romero-Blanco A. Behavioral Variables to Assess the Toxicity of Unionized Ammonia in Aquatic Snails: Integrating Movement and Feeding Parameters. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:429-438. [PMID: 35332359 PMCID: PMC8971178 DOI: 10.1007/s00244-022-00920-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Behavioral endpoints are important parameters to assess the effects of toxicants on aquatic animals. These endpoints are useful in ecotoxicology because several toxicants modify the animal behavior, which may cause adverse effects at higher levels of ecological organization. However, for the development of new bioassays and for including the behavior in ecotoxicological risk assessment, the comparison of sensitivity between different behavioral endpoints is necessary. Additionally, some toxicants remain in aquatic environments for a few hours or days, which may lead to animal recovery after toxicant exposure. Our study aimed to assess the effect of unionized ammonia on the movement and feeding behaviors of the aquatic gastropod Potamopyrgus antipodarum (Tateidae, Mollusca) and its recovery after exposure. Four treatments were used: a control and three nominal concentrations of unionized ammonia (0.25, 0.5 and 1 mg N-NH3/L). Each treatment was replicated eight times, with six animals in each replicate. Animals were exposed to unionized ammonia for 48 h (exposure period) and, subsequently, to control water for 144 h (post-exposure period). Two movement variables were monitored without food and five feeding behavioral variables were monitored in the presence of food. Some of the feeding behavioral variables showed higher sensitivity (LOEC = 0.25-0.5 mg N-NH3/L) than the movement behavior variables monitored without food (LOEC = 1 mg N-NH3/L). After exposure to unionized ammonia, animals showed a recovery of most behavioral endpoints. The inclusion of post-exposure period and feeding behaviors in bioassays may make studies more realistic, which is crucial for a proper ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego S/N, 28801, Alcalá de Henares, Madrid, Spain.
| | - Gloria Gómez-de-Prado
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego S/N, 28801, Alcalá de Henares, Madrid, Spain
| | - Alberto Romero-Blanco
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego S/N, 28801, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
9
|
Brenzinger B, Schrödl M, Kano Y. Origin and significance of two pairs of head tentacles in the radiation of euthyneuran sea slugs and land snails. Sci Rep 2021; 11:21016. [PMID: 34697382 PMCID: PMC8545979 DOI: 10.1038/s41598-021-99172-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
The gastropod infraclass Euthyneura comprises at least 30,000 species of snails and slugs, including nudibranch sea slugs, sea hares and garden snails, that flourish in various environments on earth. A unique morphological feature of Euthyneura is the presence of two pairs of sensory head tentacles with different shapes and functions: the anterior labial tentacles and the posterior rhinophores or eyestalks. Here we combine molecular phylogenetic and microanatomical evidence that suggests the two pairs of head tentacles have originated by splitting of the original single tentacle pair (with two parallel nerve cords in each tentacle) as seen in many other gastropods. Minute deep-sea snails of Tjaernoeia and Parvaplustrum, which in our phylogeny belonged to the euthyneurans’ sister group (new infraclass Mesoneura), have tentacles that are split along much of their lengths but associated nerves and epidermal sense organs are not as specialized as in Euthyneura. We suggest that further elaboration of cephalic sense organs in Euthyneura closely coincided with their ecological radiation and drastic modification of body plans. The monotypic family Parvaplustridae nov., superfamily Tjaernoeioidea nov. (Tjaernoeiidae + Parvaplustridae), and new major clade Tetratentaculata nov. (Mesoneura nov. + Euthyneura) are also proposed based on their phylogenetic relationships and shared morphological traits.
Collapse
Affiliation(s)
- Bastian Brenzinger
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, Munich, Germany. .,Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, Munich, Germany.,Department Biology II, BioZentrum, Ludwig-Maximilians-Universität, Großhadernerstr. 2, 82152, Planegg-Martinsried, Germany.,SNSB-Bavarian State Collection of Paleontology and Geology, GeoBioCenter LMU, Richard-Wagner-Str. 10, 80333, Munich, Germany
| | - Yasunori Kano
- Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
10
|
Manríquez PH, Jara ME, González CP, Seguel M, Quijón PA, Widdicombe S, Pulgar JM, Quintanilla-Ahumada D, Anguita C, Duarte C. Effects of artificial light at night and predator cues on foraging and predator avoidance in the keystone inshore mollusc Concholepas concholepas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116895. [PMID: 33784562 DOI: 10.1016/j.envpol.2021.116895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The growth of Artificial Light At Night (ALAN) is potentially having widespread effects on terrestrial and coastal habitats. In this study we addressed both the individual effects of ALAN, as well as its combined effect with predation risk on the behaviour of Concholepas concholepas, a fishery resource and a keystone species in the southeastern Pacific coast. We measured the influence of ALAN and predation risk on this mollusc's feeding rate, use of refuge for light and crawling out of water behaviour. These behavioural responses were studied using light intensities that mimicked levels that had been recorded in coastal habitat exposed to ALAN. Cues were from two species known to prey on C. concholepas during its early ontogeny: the crab Acanthocyclus hassleri and the seastar Heliaster helianthus. The feeding rates of C. concholepas were 3-4 times higher in darkness and in the absence of predator cues. In contrast, ALAN-exposed C. concholepas showed lower feeding activity and were more likely to be in a refuge than those exposed to control conditions. In the presence of olfactory predator cues, and regardless of light treatment, C. concholepas tended to crawl-out of the waterline. We provide evidence to support the hypothesis that exposure to either ALAN or predation risk can alter the feeding behaviour of C. concholepas. However, predator cue recognition in C. concholepas was not affected by ALAN in situations where ALAN and predator cues were both present: C. concholepas continued to forage when predation risk was low, i.e., in darkness and away from predator cues. Whilst this response means that ALAN may not lead to increased predation mortality in C. concholepas, it will reduce feeding activity in this naturally nocturnal species in the absence of dark refugia. Such results may have implications for the long-term health, productivity and sustainability of this keystone species.
Collapse
Affiliation(s)
- Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de La Ontogenia Temprana (LECOT), Coquimbo, Chile.
| | - María Elisa Jara
- Laboratorio de Ecología y Conducta de La Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Claudio P González
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de La Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Mylene Seguel
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de La Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Stephen Widdicombe
- Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - José M Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristobal Anguita
- Laboratorio de Ecología de Vida Silvestre, Facultad de Ciencias Forestales y Conservación de La Naturaleza, Universidad de Chile, Av. Santa Rosa, 11315, La Pintana, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Chile
| |
Collapse
|
11
|
Moore PA, Edwards D, Jurcak-Detter A, Lahman S. Spatial, but not temporal, aspects of orientation are controlled by the fine-scale distribution of chemical cues in turbulent odor plumes. J Exp Biol 2021; 224:237793. [PMID: 34424965 DOI: 10.1242/jeb.240457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Orientation within turbulent odor plumes occurs across a vast range of spatial and temporal scales. From salmon homing across featureless oceans to microbes forming reproductive spores, the extraction of spatial and temporal information from chemical cues is a common sensory phenomenon. Yet, given the difficulty of quantifying chemical cues at the spatial and temporal scales used by organisms, discovering what aspects of chemical cues control orientation behavior has remained elusive. In this study, we placed electrochemical sensors on the carapace of orienting crayfish and measured, with fast temporal rates and small spatial scales, the concentration fluctuations arriving at the olfactory appendages during orientation. Our results show that the spatial aspects of orientation (turning and heading angles) are controlled by the temporal aspects of odor cues.
Collapse
Affiliation(s)
- Paul A Moore
- Laboratory for Sensory Ecology, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - David Edwards
- Laboratory for Sensory Ecology, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Ana Jurcak-Detter
- Department of Biology, Friends University, 2100 W. University Avenue, Wichita, KS 67213, USA
| | - Sara Lahman
- School of Agricultural and Biological Sciences, University of Mount Olive, Mount Olive, NC 28365, USA
| |
Collapse
|
12
|
Pavone CB, Gorman D, Flores AAV. Evidence of surplus carrying capacity for benthic invertebrates with the poleward range extension of the tropical seagrass Halophila decipiens in SE Brazil. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105108. [PMID: 32846321 DOI: 10.1016/j.marenvres.2020.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Seagrasses may enhance the abundance and diversity of benthic invertebrates through trophic facilitation. We investigated this potential ecological function for two seagrasses in SE Brazil: Halodule emarginata, a native species, and Halophila decipiens, a tropical seagrass recently established in the region. At Halophila sites, the organic matter (or carbon) in sediments decreased steadily from seagrass patches to isolated bare grounds, indicating surplus primary production. This was not observed at Halodule sites. At one of the two Halophila sites, localized trophic enrichment was also consistently linked to increased invertebrate abundance within patches, chiefly through increased carrying capacity of small mesoherbivores. Rather than spillover, edge effects were observed at bordering bare habitats, where polychaete predators were abundant. The transition from seagrass edges to isolated bare habitats was marked by an increase of the density of sipunculid worms. The current spread of Halophila may thus change the spatial distribution of benthic ecological functions.
Collapse
Affiliation(s)
- Carla B Pavone
- Centre for Marine Biology - University of São Paulo, São Sebastião, SP, Brazil; Institute of Biology - State University of Campinas, Campinas, SP, Brazil
| | - Daniel Gorman
- CSIRO Oceans and Atmosphere, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Augusto A V Flores
- Centre for Marine Biology - University of São Paulo, São Sebastião, SP, Brazil.
| |
Collapse
|
13
|
Horváth R, Battonyai I, Maász G, Schmidt J, Fekete ZN, Elekes K. Chemical-neuroanatomical organization of peripheral sensory-efferent systems in the pond snail (Lymnaea stagnalis). Brain Struct Funct 2020; 225:2563-2575. [PMID: 32951073 PMCID: PMC7544616 DOI: 10.1007/s00429-020-02145-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022]
Abstract
Perception and processing of chemical cues are crucial for aquatic gastropods, for proper elaboration of adaptive behavior. The pond snail, Lymnaea stagnalis, is a model species of invertebrate neurobiology, in which peripheral sensory neurons with different morphology and transmitter content have partly been described, but we have little knowledge regarding their functional morphological organization, including their possible peripheral intercellular connections and networks. Therefore the aim of our study was to characterize the sensory system of the tentacles and the lip, as primary sensory regions, and the anterior foot of Lymnaea with special attention to the transmitter content of the sensory neurons, and their relationship to extrinsic elements of the central nervous system. Numerous bipolar sensory cells were demonstrated in the epithelial layer of the peripheral organs, displaying immunoreactivity to antibodies raised against tyrosine hydroxylase, histamine, glutamate and two molluscan type oligopeptides, FMRFamide and Mytilus inhibitory peptide. A subepithelial plexus was formed by extrinsic serotonin and FMRFamide immunoreactive fibers, whereas in deeper regions axon processess of different origin with various immunoreactivities formed networks, too. HPLC-MS assay confirmed the presence of the low molecular weight signal molecules in the three examined areas. Following double-labeling immunohistochemistry, close arrangements were observed, formed by sensory neurons and extrinsic serotonergic (and FMRFamidergic) fibers at axo-dendritic, axo-somatic and axo-axonic levels. Our results suggest the involvement of a much wider repertoire of signal molecules in peripheral sensory processes of Lymnaea, which can locally be modified by central input, hence influencing directly the responses to environmental cues.
Collapse
Affiliation(s)
- Réka Horváth
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary.
| | - Izabella Battonyai
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary
| | - Gábor Maász
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary
| | - János Schmidt
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs, 7624, Pécs, Hungary
| | - Zsuzsanna N Fekete
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary
| | - Károly Elekes
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary
| |
Collapse
|
14
|
Eliuk L, Brown S, Wyeth R, Detwiler J. Parasite-modified behaviour in non-trophic transmission: trematode parasitism increases the attraction between snail intermediate hosts. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many parasites with complex life cycles cause host behavioural changes that increase the likelihood of transmission to the next host. Parasite modification is often found in trophic transmission, but its influence on non-trophic transmission is unclear. In trematodes, transmission from the first to second intermediate host is non-trophic, suggesting that free-swimming larvae (cercariae) emerging in closer proximity to the next host would have higher transmission success. We performed a series of behavioural experiments with echinostome trematodes and their snail hosts to determine if potential second hosts (ramshorn snail, genus Planorbella Haldeman, 1842) were more attracted to parasitized first hosts (marsh pondsnail, Lymnaea elodes Say, 1821). In a Y maze, a responding snail (Planorbella sp.) was placed in the base and its response to five treatments was assessed: no stimulus, turion duckweed (Lemna turionifera Landolt; a food item), non-parasitized L. elodes, parasitized L. elodes, and finally parasitized versus non-parasitized L. elodes. Snails showed some attraction to uninfected snails, but had a stronger response to infected first host snails. These results indicate that potential second host snails were more attracted to parasitized, heterospecific first host snails over non-parasitized heterospecific snails. This study demonstrates that echinostome trematodes alter snail behaviour by changing navigational choices in uninfected potential hosts through a chemical communication mechanism.
Collapse
Affiliation(s)
- L.K. Eliuk
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - S. Brown
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - R.C. Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - J.T. Detwiler
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
15
|
Tuset VM, Galimany E, Farrés A, Marco-Herrero E, Otero-Ferrer JL, Lombarte A, Ramón M. Recognising mollusc shell contours with enlarged spines: Wavelet vs Elliptic Fourier analyses. ZOOLOGY 2020; 140:125778. [PMID: 32279016 DOI: 10.1016/j.zool.2020.125778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 12/01/2022]
Abstract
Gastropod shells may present large spines and sharp shapes that vary according to environmental, taxonomic, and evolutionary factors. In these cases, classic morphometric methods used to study shell contour might not provide a clear representation of morphological shell based on angular decomposition of contour. The present study analyzed and compared for the first time the robustness of the contour analysis using wavelet transformed and Elliptic Fourier descriptors for gastropod shells including enlarged spines. For that, we analyzed two geographical and ecological separated populations of Bolinus brandaris from the NW Mediterranean Sea. Results showed that contour analysis of gastropod shells with enlarged spines can be analyzed using both methodologies, but the wavelet analysis provided a better local discrimination. From an ecological perspective, shells with spines of different sizes were observed in both localities suggesting a wide plasticity of the species.
Collapse
Affiliation(s)
- Victor M Tuset
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Spain.
| | - Eve Galimany
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Spain
| | - Ada Farrés
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Spain
| | - Elena Marco-Herrero
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Spain; Centre Oceanogràfic de les Balears, Instituto Español de Oceanografía (IEO), Moll de Ponent, s/n, 07015 Palma de Mallorca, Spain
| | - José Luís Otero-Ferrer
- Biostatech, Advice, Training and Innovation in Biostatistics (Ltd), Edificio Emprendia, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Antoni Lombarte
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Spain
| | - Montserrat Ramón
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Spain
| |
Collapse
|
16
|
Bezares-Calderón LA, Berger J, Jékely G. Diversity of cilia-based mechanosensory systems and their functions in marine animal behaviour. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190376. [PMID: 31884914 PMCID: PMC7017336 DOI: 10.1098/rstb.2019.0376] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
Sensory cells that detect mechanical forces usually have one or more specialized cilia. These mechanosensory cells underlie hearing, proprioception or gravity sensation. To date, it is unclear how cilia contribute to detecting mechanical forces and what is the relationship between mechanosensory ciliated cells in different animal groups and sensory systems. Here, we review examples of ciliated sensory cells with a focus on marine invertebrate animals. We discuss how various ciliated cells mediate mechanosensory responses during feeding, tactic responses or predator-prey interactions. We also highlight some of these systems as interesting and accessible models for future in-depth behavioural, functional and molecular studies. We envisage that embracing a broader diversity of organisms could lead to a more complete view of cilia-based mechanosensation. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
17
|
Brokaw AF, Smotherman M. Role of ecology in shaping external nasal morphology in bats and implications for olfactory tracking. PLoS One 2020; 15:e0226689. [PMID: 31914127 PMCID: PMC6948747 DOI: 10.1371/journal.pone.0226689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/03/2019] [Indexed: 01/05/2023] Open
Abstract
Many animals display morphological adaptations of the nose that improve their ability to detect and track odors. Bilateral odor sampling improves an animals' ability to navigate using olfaction and increased separation of the nostrils facilitates olfactory source localization. Many bats use odors to find food and mates and bats display an elaborate diversity of facial features. Prior studies have quantified how variations in facial features correlate with echolocation and feeding ecology, but surprisingly none have asked whether bat noses might be adapted for olfactory tracking in flight. We predicted that bat species that rely upon odor cues while foraging would have greater nostril separation in support of olfactory tropotaxis. Using museum specimens, we measured the external nose and cranial morphology of 40 New World bat species. Diet had a significant effect on external nose morphology, but contrary to our predictions, insectivorous bats had the largest relative separation of nostrils, while nectar feeding species had the narrowest nostril widths. Furthermore, nasal echolocating bats had significantly narrower nostrils than oral emitting bats, reflecting a potential trade-off between sonar pulse emission and stereo-olfaction in those species. To our knowledge, this is the first study to evaluate the evolutionary interactions between olfaction and echolocation in shaping the external morphology of a facial feature using modern phylogenetic comparative methods. Future work pairing olfactory morphology with tracking behavior will provide more insight into how animals such as bats integrate olfactory information while foraging.
Collapse
Affiliation(s)
- Alyson F. Brokaw
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Smotherman
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|