1
|
Lee SH, Kim MA, Sohn YC. Allatotropin (AT) related peptides L-ATRP and D2-ATRP diastereomers activate an endogenous receptor and suppress heart rate in the Pacific abalone Haliotis discus hannai. Peptides 2024; 181:171284. [PMID: 39147283 DOI: 10.1016/j.peptides.2024.171284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Allatotropin (AT) has been identified in many insects and plays important roles in the regulation of their intestinal contraction, heart rate, ion transport, and digestive enzyme secretion. However, information on AT-related bioinformatics in other animal phyla is scarce. In this study, we cloned a full-length cDNA encoding the AT-related peptide receptor (ATRPR) of the abalone Haliotis discus hannai (Hdh) and further characterized Hdh-ATRPR with its potential ligands, Hdh-ATRPs. In luciferase reporter and Ca2+ mobilization assays, Hdh-ATRPs, including a D-type Phe at the second amino acid position, Hdh-D2-ATRP, activated Hdh-ATRPR in a dose-dependent manner, whereas all-L-type Hdh-ATRP was a more potent ligand than Hdh-D2-ATRP. Furthermore, Hdh-ATRPs induced ERK1/2 phosphorylation in Hdh-ATRPR-expressing HEK293 cells, which was dose-dependently abolished by the PKC inhibitor Gö6983. The heart rate decreased significantly within 10 min when Hdh-D2-ATRP was injected into the adduct muscle sinus of abalone (0.2 or 1.0 µg/g body weight), while the abalone injected with a high concentration of Hdh-D2-ATRP (1.5 μg/g body weight) were sublethal within 5 h. Thus, Hdh-ATRP signaling is primarily linked to the Gαq/PKC and is possibly associated with heart rate regulation in abalone.
Collapse
Affiliation(s)
- Sang Hyuck Lee
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
| | - Mi Ae Kim
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
| | - Young Chang Sohn
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea.
| |
Collapse
|
2
|
José Villalobos Sambucaro M, Pacheco C, Rafael Ronderos J. Allatotropic peptides modulate muscle contraction of the female reproductive system in Rhodnius prolixus (STÄL). Gen Comp Endocrinol 2023; 343:114358. [PMID: 37567349 DOI: 10.1016/j.ygcen.2023.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Allatotropin (AT) acts as a myoregulator at the level of the dorsal vessel (DV) and midgut (MG) in triatominae insects. Previous analyses of the expression of the AT receptor in Rhodnius prolixus showed that AT is expressed in the DV and MG, but also in the reproductive system in females. To further study the activity of AT on female reproductive organs we analyzed the response by adult females in different physiological conditions, including unfed (virgin and mated), and fed mated females (gravid), to doses ranging between 10-14 and 10-6M. Myoregulatory activity was evaluated in vivo, by recording independently the frequency of contractions of each organ after treatment. The results show that the effect of AT varies depending on the organs and on the physiological state of the female. Whilst unfed virgin females did not show response to the peptide for neither of the applied doses, the ovaries showed a differential response, presenting the highest frequency of contractions in gravid individuals. An increase in the frequency of contractions of the oviducts was only observed in mated females. Uterus and spermathecae responded in both gravid and mated females, with maximum activity in the latter. In the bursa, responses were only detected in gravid females. The differential response of the organs seems to be associated to particular moments along the reproductive cycle, such as with the spermathecae that reacted to AT in both unfed mated and gravid females, when the movement of spermatozoids is physiologically crucial. Testes and accessory glands of the male, expressed the mRNA of AT precursor, suggesting that the male would modulate the contractile behavior of the female reproductive system after copula. The ovaries also expressed AT mRNA suggesting the existence of a paracrine/autocrine system modulating muscle contraction.
Collapse
Affiliation(s)
- María José Villalobos Sambucaro
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo - Universidad Nacional de La Plata (FCNyM - UNLP), La Plata, Argentina; Concejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cristian Pacheco
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo - Universidad Nacional de La Plata (FCNyM - UNLP), La Plata, Argentina; Post-doctoral fellow (FONCyT), Argentina
| | - Jorge Rafael Ronderos
- Cátedra de Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo - Universidad Nacional de La Plata (FCNyM - UNLP), La Plata, Argentina.
| |
Collapse
|
3
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Checco JW, Zhang G, Yuan WD, Le ZW, Jing J, Sweedler JV. Aplysia allatotropin-related peptide and its newly identified d-amino acid-containing epimer both activate a receptor and a neuronal target. J Biol Chem 2018; 293:16862-16873. [PMID: 30194283 PMCID: PMC6204918 DOI: 10.1074/jbc.ra118.004367] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
l- to d-residue isomerization is a post-translational modification (PTM) present in neuropeptides, peptide hormones, and peptide toxins from several animals. In most cases, the d-residue is critical for the biological function of the resulting d-amino acid-containing peptide (DAACP). Here, we provide an example in native neuropeptides in which the DAACP and its all-l-amino acid epimer are both active at their newly identified receptor in vitro and at a neuronal target associated with feeding behavior. On the basis of sequence similarity to a known DAACP from cone snail venom, we hypothesized that allatotropin-related peptide (ATRP), a neuropeptide from the neuroscience model organism Aplysia californica, may form multiple diastereomers in the Aplysia central nervous system. We determined that ATRP exists as a d-amino acid-containing peptide (d2-ATRP) and identified a specific G protein-coupled receptor as an ATRP receptor. Interestingly, unlike many previously reported DAACPs and their all-l-residue analogs, both l-ATRP and d2-ATRP were potent agonists of this receptor and active in electrophysiological experiments. Finally, d2-ATRP was much more stable than its all-l-residue counterpart in Aplysia plasma, suggesting that in the case of ATRP, the primary role of the l- to d-residue isomerization may be to protect this peptide from aminopeptidase activity in the extracellular space. Our results indicate that l- to d-residue isomerization can occur even in an all-l-residue peptide with a known biological activity and that in some cases, this PTM may help modulate peptide signal lifetime in the extracellular space rather than activity at the cognate receptor.
Collapse
Affiliation(s)
- James W Checco
- From the Beckman Institute for Advanced Science and Technology and
| | - Guo Zhang
- the State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Jiangsu 210046, China
| | - Wang-Ding Yuan
- the State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Jiangsu 210046, China
| | - Zi-Wei Le
- the State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Jiangsu 210046, China
| | - Jian Jing
- the State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Jiangsu 210046, China
| | - Jonathan V Sweedler
- From the Beckman Institute for Advanced Science and Technology and
- the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| |
Collapse
|
5
|
Hillyer JF. Insect heart rhythmicity is modulated by evolutionarily conserved neuropeptides and neurotransmitters. CURRENT OPINION IN INSECT SCIENCE 2018; 29:41-48. [PMID: 30551824 DOI: 10.1016/j.cois.2018.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 05/15/2023]
Abstract
Insects utilize an open circulatory system to transport nutrients, waste, hormones and immune factors throughout the hemocoel. The primary organ that drives hemolymph circulation is the dorsal vessel, which is a muscular tube that traverses the length of the body and is divided into an aorta in the head and thorax, and a heart in the abdomen. The dorsal vessel is myogenic, but its rhythmicity is modulated by neuropeptides and neurotransmitters. This review summarizes how neuropeptides such as crustacean cardioactive peptide (CCAP), FMRFamide-like peptides, proctolin, allatotropin and allatostatin modulate the heart contraction rate and the directionality of heart contractions. Likewise, it discusses how neurotransmitters such as serotonin, octopamine, glutamate and nitric oxide influence the heart rate, and how transcriptomic and proteomic approaches are advancing our understanding of insect circulatory physiology. Finally, this review argues that the immune system may modulate heart rhythmicity, and discusses how the myotropic activity of cardioactive factors extends to the accessory pulsatile organs, such as the auxiliary hearts of the antennae.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
6
|
Abstract
Neuropeptides are evolutionarily ancient mediators of neuronal signalling that regulate a wide range of physiological processes and behaviours in animals. Neuropeptide signalling has been investigated extensively in vertebrates and protostomian invertebrates, which include the ecdysozoans Drosophila melanogaster (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda). However, until recently, an understanding of evolutionary relationships between neuropeptide signalling systems in vertebrates and protostomes has been impaired by a lack of genome/transcriptome sequence data from non-ecdysozoan invertebrates. The echinoderms—a deuterostomian phylum that includes sea urchins, sea cucumbers and starfish—have been particularly important in providing new insights into neuropeptide evolution. Sequencing of the genome of the sea urchin Strongylocentrotus purpuratus (Class Echinoidea) enabled discovery of (i) the first invertebrate thyrotropin-releasing hormone-type precursor, (ii) the first deuterostomian pedal peptide/orcokinin-type precursors and (iii) NG peptides—the ‘missing link’ between neuropeptide S in tetrapod vertebrates and crustacean cardioactive peptide in protostomes. More recently, sequencing of the neural transcriptome of the starfish Asterias rubens (Class Asteroidea) enabled identification of 40 neuropeptide precursors, including the first kisspeptin and melanin-concentrating hormone-type precursors to be identified outside of the chordates. Furthermore, the characterization of a corazonin-type neuropeptide signalling system in A. rubens has provided important new insights into the evolution of gonadotropin-releasing hormone-related neuropeptides. Looking forward, the discovery of multiple neuropeptide signalling systems in echinoderms provides opportunities to investigate how these systems are used to regulate physiological and behavioural processes in the unique context of a decentralized, pentaradial bauplan.
Collapse
|
7
|
Kai ZP, Zhu JJ, Deng XL, Yang XL, Chen SS. Discovery of a Manduca sexta Allatotropin Antagonist from a Manduca sexta Allatotropin Receptor Homology Model. Molecules 2018; 23:molecules23040817. [PMID: 29614008 PMCID: PMC6017089 DOI: 10.3390/molecules23040817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 11/23/2022] Open
Abstract
Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behavior. They have been identified as candidate targets for next-generation insecticides, yet these targets have been relatively poorly exploited for insect control. In this study, we present a pipeline of novel Manduca sexta allatotropin (Manse-AT) antagonist discovery with homology modeling, docking, molecular dynamics simulation and structure-activity relationship. A series of truncated and alanine-replacement analogs of Manse-AT were assayed for the stimulation of juvenile hormone biosynthesis. The minimum sequence required to retain potent biological activity is the C-terminal amidated octapeptide Manse-AT (6–13). We identified three residues essential for bioactivity (Thr4, Arg6 and Phe8) by assaying alanine-replacement analogs of Manse-AT (6–13). Alanine replacement of other residues resulted in reduced potency but bioactivity was retained. The 3D structure of the receptor (Manse-ATR) was built and the binding pocket was identified. The binding affinities of all the analogs were estimated by calculating the free energy of binding. The calculated binding affinities corresponded to the biological activities of the analogs, which supporting our localization of the binding pocket. Then, based on the docking and molecular dynamics studies of Manse-AT (10–13), we described it can act as a potent Manse-AT antagonist. The antagonistic effect on JH biosynthesis of Manse-AT (10–13) validated our hypothesis. The IC50 value of antagonist Manse-AT (10–13) is 0.9 nM. The structure-activity relationship of antagonist Manse-AT (10–13) was also studied for the further purpose of investigating theoretically the structure factors influencing activity. These data will be useful for the design of new Manse-AT agonist and antagonist as potential pest control agents.
Collapse
Affiliation(s)
- Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Jing-Jing Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
- Institute of Agro-Food Standards and Testing Technologies, Shanghai Academy of agricultural Science, Shanghai 201403, China.
| | - Xi-Le Deng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Xin-Ling Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| | - Shan-Shan Chen
- Institute of Agro-Food Standards and Testing Technologies, Shanghai Academy of agricultural Science, Shanghai 201403, China.
| |
Collapse
|
8
|
Alzugaray ME, Ronderos JR. Allatoregulatory-like systems and changes in cytosolic Ca 2+ modulate feeding behavior in Hydra. Gen Comp Endocrinol 2018; 258:70-78. [PMID: 28733226 DOI: 10.1016/j.ygcen.2017.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 12/26/2022]
Abstract
Allatotropin (AT) and allatostatin-C (AST-C) are neuropeptides originally characterized by their ability to modulate the secretion of juvenile hormones in insects. Beyond the allatoregulatory function, these neuropeptides are pleiotropic acting as myoregulators not only in insects, but also in other groups of invertebrates. We have previously proposed the existence of AT and AST-C like systems in Hydra sp., a member of the phylum Cnidaria, which is a basal group of Metazoa, sharing a common ancestor with Bilateria. In the present study we analyze the regulatory effects of both peptides on the activity of the hypostome during feeding in Hydra sp. Furthermore, the importance of changes in the cytosolic Ca2+ levels involved in the response of the hypostome were analyzed. Physiological assays showed that while the presence of food or treatment with AT stimulates the extrusion of the hypostome, AST-C has an inhibitory effect on the behavior induced by both, food and AT. These facts suggest that both systems participate in the regulatory mechanisms associated with feeding and, as in insects, AST-C and AT may exert opposite effects. The use of thapsigargin (TG) and nifedipine, two compounds that modify the levels of cytosolic Ca2+, showed that changes in the levels of this ion are involved in the regulation of the activity of the hypostome. Indeed, these results suggest that the two basic mechanisms operating to increase the cytosolic levels of Ca2+ (i.e. the influx from the extracellular space and the release from endoplasmic reticulum) are relevant for the extrusion of the hypostome. Like in insects, the treatment with TG counteracted the effect of AST-C, suggesting that this peptide acts by reducing cytosolic Ca2+ levels. Furthermore, nifedipine prevented the myostimulatory effect of AT, showing that the effect of this peptide depends on the influx of Ca2+ throughout voltage-gated calcium channels. Altogether, these results suggest that the Allatotropin/Orexin and Allatostatin/Somatostatin regulatory systems could represent an ancestral mechanisms regulating hypostome activity and feeding behavior in Cnidaria.
Collapse
Affiliation(s)
- María Eugenia Alzugaray
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata FCNyM - UNLP), La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Jorge Rafael Ronderos
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata FCNyM - UNLP), La Plata, Argentina.
| |
Collapse
|
9
|
Bednár B, Roller L, Čižmár D, Mitrová D, Žitňan D. Developmental and sex-specific differences in expression of neuropeptides derived from allatotropin gene in the silkmoth Bombyx mori. Cell Tissue Res 2017; 368:259-275. [PMID: 28091775 DOI: 10.1007/s00441-016-2556-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/06/2016] [Indexed: 01/01/2023]
Abstract
Allatotropin (AT) and related neuropeptides are widespread bioactive molecules that regulate development, food intake and muscle contractions in insects and other invertebrates. In moths, alternative splicing of the at gene generates three mRNA precursors encoding AT with different combinations of three structurally similar AT-like peptides (ATLI-III). We used in situ hybridization and immunohistochemistry to map the differential expression of these transcripts during the postembryonic development of Bombyx mori. Transcript encoding AT alone was expressed in numerous neurons of the central nervous system and frontal ganglion, whereas transcripts encoding AT with ATLs were produced by smaller specific subgroups of neurons in larval stages. Metamorphosis was associated with considerable developmental changes and sex-specific differences in the expression of all transcripts. The most notable was the appearance of AT/ATL transcripts (1) in the brain lateral neurosecretory cells producing prothoracicotropic hormone; (2) in the male-specific cluster of about 20 neurons in the posterior region of the terminal abdominal ganglion; (3) in the female-specific medial neurons in the abdominal ganglia AG2-7. Immunohistochemical staining showed that these neurons produced a mixture of various neuropeptides and innervated diverse peripheral organs. Our data suggest that AT/ATL neuropeptides are involved in multiple stage- and sex-specific functions during the development of B. mori.
Collapse
Affiliation(s)
- Branislav Bednár
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Daniel Čižmár
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Diana Mitrová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.
| |
Collapse
|
10
|
Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol 2016; 6:150224. [PMID: 26865025 PMCID: PMC4772807 DOI: 10.1098/rsob.150224] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an ‘intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan.
Collapse
Affiliation(s)
- Dean C Semmens
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olivier Mirabeau
- Institut Curie, Genetics and Biology of Cancers Unit, INSERM U830, PSL Research University, Paris 75005, France
| | - Ismail Moghul
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mahesh R Pancholi
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
11
|
Schmitt F, Vanselow JT, Schlosser A, Wegener C, Rössler W. Neuropeptides in the desert antCataglyphis fortis: Mass spectrometric analysis, localization, and age-related changes. J Comp Neurol 2016; 525:901-918. [DOI: 10.1002/cne.24109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Franziska Schmitt
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter; University of Würzburg; D-97074 Würzburg Germany
| | - Jens T. Vanselow
- Rudolf Virchow Center for Experimental Biomedicine; University of Würzburg; D-97080 Würzburg Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine; University of Würzburg; D-97080 Würzburg Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter; University of Würzburg; D-97074 Würzburg Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter; University of Würzburg; D-97074 Würzburg Germany
| |
Collapse
|
12
|
Suggs JM, Jones TH, Murphree CS, Hillyer JF. CCAP and FMRFamide-like peptides accelerate the contraction rate of the antennal accessory pulsatile organs (auxiliary hearts) of mosquitoes. J Exp Biol 2016; 219:2388-95. [DOI: 10.1242/jeb.141655] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/25/2016] [Indexed: 01/22/2023]
Abstract
Insects rely on specialized accessory pulsatile organs (APOs), also known as auxiliary hearts, to propel hemolymph into their antennae. In most insects, this is accomplished via the pulsations of a pair of ampulla located in the head, each of which propels hemolymph across an antenna via an antennal vessel. Once at the distal end of the appendage, hemolymph returns to the head via the antennal hemocoel. Although the structure of the antennal hearts has been elucidated in various insect orders, their hormonal modulation has only been studied in cockroaches and other hemimetabolous insects within the superorder Polyneoptera, where proctolin and FMRFamide-like peptides accelerate the contraction rate of these auxiliary hearts. Here, we assessed the hormonal modulation of the antennal APOs of mosquitoes, a group of holometabolous (Endopterygota) insects within the order Diptera. We show that crustacean cardioactive peptide (CCAP), FMRFamide and SALDKNFMRFamide increase the contraction rate of the antennal APOs and the heart of Anopheles gambiae. Both antennal hearts are synchronously responsive to these neuropeptides, but their contractions are asynchronous with the contraction of the heart. Furthermore, we show that these neuropeptides increase the velocity and maximum acceleration of hemolymph within the antennal space, suggesting that each contraction is also more forceful. To our knowledge, this is the first report demonstrating that hormones of a holometabolous insect modulate the contraction dynamics of an auxiliary heart, and the first report that shows that the hormones of any insect accelerate the velocity of hemolymph in the antennal space.
Collapse
Affiliation(s)
- Julia M. Suggs
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Talitha H. Jones
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Biology, Belmont University, Nashville, TN, USA
| | | | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
13
|
The neurotransmitters serotonin and glutamate accelerate the heart rate of the mosquito Anopheles gambiae. Comp Biochem Physiol A Mol Integr Physiol 2015; 188:49-57. [DOI: 10.1016/j.cbpa.2015.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 11/22/2022]
|
14
|
Verlinden H, Gijbels M, Lismont E, Lenaerts C, Vanden Broeck J, Marchal E. The pleiotropic allatoregulatory neuropeptides and their receptors: A mini-review. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:2-14. [PMID: 25982521 DOI: 10.1016/j.jinsphys.2015.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Juvenile hormones (JH) are highly pleiotropic insect hormones essential for post-embryonic development. The circulating JH titer in the hemolymph of insects is influenced by enzymatic degradation, binding to JH carrier proteins, uptake and storage in target organs, but evidently also by rates of production at its site of synthesis, the corpora allata (CA). The multiple processes in which JH is involved alongside the critical significance of JH in insect development emphasize the importance for elucidating the control of JH production. Production of JH in CA cells is regulated by different factors: by neurotransmitters, such as dopamine and glutamate, but also by allatoregulatory neuropeptides originating from the brain and axonally transported to the CA where they bind to their G protein-coupled receptors (GPCRs). Different classes of allatoregulatory peptides exist which have other functions aside from acting as influencers of JH production. These pleiotropic neuropeptides regulate different processes in different insect orders. In this mini-review, we will give an overview of allatotropins and allatostatins, and their recently characterized GPCRs with a view to better understand their modes of action and different action sites.
Collapse
Affiliation(s)
- Heleen Verlinden
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Marijke Gijbels
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Els Lismont
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Cynthia Lenaerts
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Elisabeth Marchal
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
15
|
Villalobos-Sambucaro MJ, Lorenzo-Figueiras AN, Riccillo FL, Diambra LA, Noriega FG, Ronderos JR. Allatotropin modulates myostimulatory and cardioacceleratory activities in Rhodnius prolixus (Stal). PLoS One 2015; 10:e0124131. [PMID: 25897783 PMCID: PMC4405368 DOI: 10.1371/journal.pone.0124131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/10/2015] [Indexed: 11/22/2022] Open
Abstract
Haematophagous insects can ingest large quantities of blood in a single meal and eliminate high volumes of urine in the next few hours. This rise in diuresis is possible because the excretory activity of the Malpighian tubules is facilitated by an increase in haemolymph circulation as a result of intensification of aorta contractions combined with an increase of the anterior midgut peristaltic waves. It has been previously described that haemolymph circulation during post-prandial diuresis is stimulated by the synergistic activity of allatotropin (AT) and serotonin in the kissing bug Triatoma infestans; resulting in an increase in aorta contractions. In the same species, AT stimulates anterior midgut and rectum muscle contractions to mix urine and feces and facilitate the voiding of the rectum. Furthermore, levels of AT in midgut and Malpighian tubules increased in the afternoon when insects are getting ready for nocturnal feeding. In the present study we describe the synergistic effect of AT and serotonin increasing the frequency of contractions of the aorta in Rhodnius prolixus. The basal frequency of contractions of the aorta in the afternoon is higher that the observed during the morning, suggesting the existence of a daily rhythmic activity. The AT receptor is expressed in the rectum, midgut and dorsal vessel, three critical organs involved in post-prandial diuresis. All together these findings provide evidence that AT plays a role as a myoregulatory and cardioacceleratory peptide in R. prolixus.
Collapse
Affiliation(s)
- María José Villalobos-Sambucaro
- Cátedra Histología y Embriología Animal (FCNyM-UNLP), La Plata, Argentina
- Centro Regional de Estudios Genómicos (CREG-UNLP), La Plata, Argentina
| | | | - Fernando Luis Riccillo
- Cátedra Histología y Embriología Animal (FCNyM-UNLP), La Plata, Argentina
- Centro Regional de Estudios Genómicos (CREG-UNLP), La Plata, Argentina
| | | | - Fernando Gabriel Noriega
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Jorge Rafael Ronderos
- Cátedra Histología y Embriología Animal (FCNyM-UNLP), La Plata, Argentina
- Centro Regional de Estudios Genómicos (CREG-UNLP), La Plata, Argentina
- * E-mail:
| |
Collapse
|
16
|
Lismont E, Vleugels R, Marchal E, Badisco L, Van Wielendaele P, Lenaerts C, Zels S, Tobe SS, Vanden Broeck J, Verlinden H. Molecular cloning and characterization of the allatotropin precursor and receptor in the desert locust, Schistocerca gregaria. Front Neurosci 2015; 9:84. [PMID: 25814925 PMCID: PMC4357254 DOI: 10.3389/fnins.2015.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/25/2015] [Indexed: 12/25/2022] Open
Abstract
Allatotropins (ATs) are pleiotropic neuropeptides initially isolated from the tobacco hornworm, Manduca sexta. In 2008, the first receptor for AT-like peptides (ATR) was characterized in Bombyx mori. Since then, ATRs have also been characterized in M. sexta, Tribolium castaneum, Aedes aegypti and Bombus terrestris. These receptors show sequence similarity to vertebrate orexin (ORX) receptors. When generating an EST-database of the desert locust (Schistocerca gregaria) central nervous system, we found cDNA sequences encoding the Schgr-AT precursor and a fragment of its putative receptor. This receptor cDNA has now been completed and functionally expressed in mammalian cell lines. Activation of this receptor, designated as Schgr-ATR, by Schgr-AT caused an increase in intracellular calcium ions, as well as cyclic AMP (cAMP), with an EC50 value in the nanomolar range. In addition, the transcript distribution of both the Schgr-AT precursor and Schgr-ATR was investigated by means of quantitative real-time PCR. Moreover, we found more evidence for the myotropic and allatostimulatory actions of Schgr-AT in the desert locust. These data are discussed and situated in a broader context by comparison with literature data on AT and ATR in insects.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Rut Vleugels
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium ; Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Liesbeth Badisco
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | | | - Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Sven Zels
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| |
Collapse
|
17
|
Masood M, Orchard I. Molecular characterization and possible biological roles of allatotropin in Rhodnius prolixus. Peptides 2014; 53:159-71. [PMID: 24177575 DOI: 10.1016/j.peptides.2013.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 11/28/2022]
Abstract
Allatotropins (ATs) are a family of neuropeptides that have been shown to stimulate the biosynthesis of juvenile hormone in certain insect species, and to have stimulatory activity on some visceral muscles. Here, we have examined the AT in Rhodnius prolixus. Molecular analysis revealed a cDNA fragment of 973 bp encoding one mature amidated AT (Rhopr-AT) with transcript levels observed in the central nervous system (CNS) and pool of fat body, trachea and associated peripheral nerves. AT-like immunoreactive neurons were found throughout the CNS and AT-like immunoreactive processes were present on some peripheral tissues. Bioassays based upon changes in hindgut and dorsal vessel contractions failed to demonstrate any myotropic effects of Rhopr-AT on these tissues; however Rhopr-AT stimulated contractions of muscles surrounding the salivary glands and secretion of saliva, as judged by the reduction in content of the cherry red saliva from the salivary glands. Serotonin stimulated an increase in peristaltic contractions of the gland though no secretion was observed. Co-application of Rhopr-AT and serotonin resulted in a more rapid secretion than either chemical alone.
Collapse
Affiliation(s)
- Maryam Masood
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
18
|
Verlinden H, Lismont E, Bil M, Urlacher E, Mercer A, Vanden Broeck J, Huybrechts R. Characterisation of a functional allatotropin receptor in the bumblebee, Bombus terrestris (Hymenoptera, Apidae). Gen Comp Endocrinol 2013; 193:193-200. [PMID: 23968772 DOI: 10.1016/j.ygcen.2013.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
Abstract
Allatotropins (ATs) are multifunctional neuropeptides initially isolated from the tobacco hornworm, Manduca sexta, where they were found to stimulate juvenile hormone synthesis and release from the corpora allata. ATs have been found in a wide range of insects, but appear to be absent in Drosophila. The first AT receptor (ATR) was characterised in 2008 in the lepidopteran Bombyx mori. Since then ATRs have been characterised in Coleoptera and Diptera and in 2012, an AT precursor gene was identified in hymenopteran species. ATRs show large sequence and structural similarity to vertebrate orexin receptors (OXR). Also, AT in insects and orexin in vertebrates show some overlap in functions, including modulation of feeding behaviour and reproduction. The goal of this study was to identify a functional ATR in a hymenopteran species. We used ATRs (insect sequences) and OXRs (vertebrate sequences) to search the genome of the bumblebee, Bombus terrestris. Two receptors (XP_003402490 and XP_003394933) with resemblance to ATRs and OXRs were found. Phylogenetic analysis provided the first indication that XP_003402490 was more closely related to ATRs than XP_003394933. We investigated the transcript level distribution of both receptors and the AT precursor gene by means of quantitative real-time reverse transcriptase PCR. XP_003402490 displayed a tissue distribution comparable with ATRs in other species, with high transcript levels in the male accessory glands. After pharmacological characterisation, it appeared that XP_003402490 is indeed a functional ATR. Activation of the receptor causes an increase in intracellular calcium and cyclic AMP levels with an EC50 value in the low nanomolar to picomolar range. XP_003394933 remains an orphan receptor.
Collapse
Affiliation(s)
- Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium; Department of Zoology, University of Otago, 340 Great King Street, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
19
|
Alzugaray ME, Adami ML, Diambra LA, Hernandez-Martinez S, Damborenea C, Noriega FG, Ronderos JR. Allatotropin: an ancestral myotropic neuropeptide involved in feeding. PLoS One 2013; 8:e77520. [PMID: 24143240 PMCID: PMC3797082 DOI: 10.1371/journal.pone.0077520] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/03/2013] [Indexed: 12/25/2022] Open
Abstract
Background Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms. Methods A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydraplagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies. Conclusions AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion. Significance Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion.
Collapse
Affiliation(s)
- María Eugenia Alzugaray
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo; Universidad Nacional de la Plata (FCNyM -UNLP), La Plata, Argentina
| | - Mariana Laura Adami
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo; Universidad Nacional de la Plata (FCNyM -UNLP), La Plata, Argentina
- División Zoología Invertebrados, Facultad de Ciencias Naturales y Museo; Universidad Nacional de la Plata (FCNyM-UNLP), La Plata, Argentina
| | - Luis Anibal Diambra
- Centro Regional de Estudios Genómicos, Universidad Nacional de la Plata (CREG-UNLP), La Plata, Argentina
| | - Salvador Hernandez-Martinez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (CISEI-INSP), Cuernavaca, Mexico
| | - Cristina Damborenea
- División Zoología Invertebrados, Facultad de Ciencias Naturales y Museo; Universidad Nacional de la Plata (FCNyM-UNLP), La Plata, Argentina
| | - Fernando Gabriel Noriega
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Jorge Rafael Ronderos
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo; Universidad Nacional de la Plata (FCNyM -UNLP), La Plata, Argentina
- Centro Regional de Estudios Genómicos, Universidad Nacional de la Plata (CREG-UNLP), La Plata, Argentina
- * E-mail:
| |
Collapse
|
20
|
Veenstra JA, Rodriguez L, Weaver RJ. Allatotropin, leucokinin and AKH in honey bees and other Hymenoptera. Peptides 2012; 35:122-30. [PMID: 22406227 DOI: 10.1016/j.peptides.2012.02.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 11/18/2022]
Abstract
In the honey bee no allatotropin gene has been found, even though allatotropin stimulates the synthesis of juvenile hormone in this species. We report here that honey bees and other Hymenoptera do have a typical allatotropin gene, although the peptides predicted have a somewhat different structure from that of other insect allatotropins. Polyclonal antisera to honey bee allatotropin reacted with material in the neurohemal organs of the segmental nerves of abdominal ganglia. We were unable to find the allatotropin peptide using mass spectrometry in extracts from these tissues. Thus the expression of this gene in honey bees is less important than in other insect species. We also characterized the leucokinin gene which similarly appears to be very weakly expressed in worker honey bees. Unlike the allatotropin gene, which is conserved within Hymenoptera, the leucokinin gene is much more variable in structure and was not found in ants nor the parasitic wasp Nasonia vitripennis. The absence of significant expression of adipokinetic hormone (AKH) in the honey bee may be due to the existence of a second TATA box in the promotor region of the gene, which explains the production of an mRNA encoding a putative peptide precursor from which no AKH should be released. Such a second TATA box was not found in other Hymenoptera, and may therefore be specific for the two Apis species. It is suggested that functional disintegration of this important metabolic gene became possible in Apis because of the highly evolved social nature of the species.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, INCIA UMR 5287 CNRS, Avenue des Facultés, 33405 Talence, France.
| | | | | |
Collapse
|
21
|
Heuer CM, Kollmann M, Binzer M, Schachtner J. Neuropeptides in insect mushroom bodies. ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:199-226. [PMID: 22401884 DOI: 10.1016/j.asd.2012.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
Owing to their experimental amenability, insect nervous systems continue to be in the foreground of investigations into information processing in - ostensibly - simple neuronal networks. Among the cerebral neuropil regions that hold a particular fascination for neurobiologists are the paired mushroom bodies, which, despite their function in other behavioral contexts, are most renowned for their role in learning and memory. The quest to understand the processes that underlie these capacities has been furthered by research focusing on unraveling neuroanatomical connections of the mushroom bodies and identifying key players that characterize the molecular machinery of mushroom body neurons. However, on a cellular level, communication between intrinsic and extrinsic mushroom body neurons still remains elusive. The present account aims to provide an overview on the repertoire of neuropeptides expressed in and utilized by mushroom body neurons. Existing data for a number of insect representatives is compiled and some open gaps in the record are filled by presenting additional original data.
Collapse
Affiliation(s)
- Carsten M Heuer
- Philipps-University Marburg, Department of Biology, Animal Physiology, Marburg, Germany.
| | | | | | | |
Collapse
|
22
|
Bendena WG, Tobe SS. Families of allatoregulator sequences: a 2011 perspective1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three different peptide families have been named “allatostatins” (ASTs), based on their initial purifications which were based on their ability to inhibit juvenile hormone (JH) biosynthesis. These include (i) a family of peptides that have a consensus C-terminal sequence Y/FXFGL-NH2; (ii) a family of peptides with a conserved C-terminal sequence W(X)6W-NH2; and(iii) a family of peptides with C-terminal sequence PISCF, some of which are C-terminally-amidated. Each allatostatin family has functions distinct and apart from the inhibition of JH biosynthesis. A peptide family known as the “allatotropins” serve to stimulate JH biosynthesis. This family of peptides also has been proven to exert multiple effects dependent on the species in question. Genome and peptidome projects are uncovering new members of these families and it is clear that these structures are not just confined to Insecta but are found in a range of invertebrates. The receptors for these neuropeptides have been identified and tested experimentally for specific ligand binding. The Y/FXFGLa-ASTs exert their action through galanin-like receptors, W(X)6Wa-ASTs through a sex peptide-binding receptor, and PISCF-ASTs through somatostatin-like receptors. These receptors are conserved through evolutionary time and are being identified in numerous invertebrates by way of genome projects.
Collapse
Affiliation(s)
- William G. Bendena
- Department of Biology and Centre for Neurosciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Stephen S. Tobe
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
23
|
Nouzova M, Brockhoff A, Mayoral JG, Goodwin M, Meyerhof W, Noriega FG. Functional characterization of an allatotropin receptor expressed in the corpora allata of mosquitoes. Peptides 2012; 34:201-8. [PMID: 21839791 PMCID: PMC3233642 DOI: 10.1016/j.peptides.2011.07.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/28/2022]
Abstract
Allatotropin is an insect neuropeptide with pleiotropic actions on a variety of different tissues. In the present work we describe the identification, cloning and functional and molecular characterization of an Aedes aegypti allatotropin receptor (AeATr) and provide a detailed quantitative study of the expression of the AeATr gene in the adult mosquito. Analysis of the tissue distribution of AeATr mRNA in adult female revealed high transcript levels in the nervous system (brain, abdominal, thoracic and ventral ganglia), corpora allata-corpora cardiaca complex and ovary. The receptor is also expressed in heart, hindgut and male testis and accessory glands. Separation of the corpora allata (CA) and corpora cardiaca followed by analysis of gene expression in the isolated glands revealed expression of the AeATr primarily in the CA. In the female CA, the AeATr mRNA levels were low in the early pupae, started increasing 6h before adult eclosion and reached a maximum 24h after female emergence. Blood feeding resulted in a decrease in transcript levels. The pattern of changes of AeATr mRNA resembles the changes in JH biosynthesis. Fluorometric Imaging Plate Reader recordings of calcium transients in HEK293 cells expressing the AeATr showed a selective response to A. aegypti allatotropin stimulation in the low nanomolar concentration range. Our studies suggest that the AeATr play a role in the regulation of JH synthesis in mosquitoes.
Collapse
Affiliation(s)
| | - Anne Brockhoff
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | | | | | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | | |
Collapse
|
24
|
Adami ML, Damborenea C, Ronderos JR. An allatotropin-like neuropeptide in Mesostoma ehrenbergii (Rhabdocoela, Platyhelminthes). ZOOMORPHOLOGY 2012. [DOI: 10.1007/s00435-012-0146-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Adami ML, Damborenea C, Ronderos JR. Expression of a neuropeptide similar to allatotropin in free living turbellaria (platyhelminthes). Tissue Cell 2011; 43:377-83. [DOI: 10.1016/j.tice.2011.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
|
26
|
Vuerinckx K, Verlinden H, Lindemans M, Broeck JV, Huybrechts R. Characterization of an allatotropin-like peptide receptor in the red flour beetle, Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:815-822. [PMID: 21742031 DOI: 10.1016/j.ibmb.2011.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/09/2011] [Accepted: 06/06/2011] [Indexed: 05/31/2023]
Abstract
Following a reverse pharmacology approach, we identified an allatotropin-like peptide receptor in Tribolium castaneum. Allatotropins are multifunctional neuropeptides initially isolated from the tabacco hornworm, Manduca sexta. They have been shown to be myoactive, to be cardio-acceleratory, to inhibit active ion transport, to stimulate juvenile hormone production and release and to be involved in the photic entrainment of the circadian clock. A tissue distribution analysis of the T. castaneum allatotropin-like peptide receptor by means of qRT-PCR revealed a prominent sexual dimorphism, the transcript levels being significantly higher in the male fat body and reproductive system. The endogenous ligand of the receptor, Trica-ATL, is able to increase the frequency and tonus of contractions in the gut and in the reproductive tract of mature red flour beetles.
Collapse
Affiliation(s)
- Kristel Vuerinckx
- Insect Physiology and Molecular Ethology, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
27
|
Horodyski FM, Verlinden H, Filkin N, Vandersmissen HP, Fleury C, Reynolds SE, Kai ZP, Broeck JV. Isolation and functional characterization of an allatotropin receptor from Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:804-814. [PMID: 21699978 DOI: 10.1016/j.ibmb.2011.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 05/31/2023]
Abstract
Manduca sexta allatotropin (Manse-AT) is a multifunctional neuropeptide whose actions include the stimulation of juvenile hormone biosynthesis, myotropic stimulation, cardioacceleratory functions, and inhibition of active ion transport. Manse-AT is a member of a structurally related peptide family that is widely found in insects and also in other invertebrates. Its precise role depends on the insect species and developmental stage. In some lepidopteran insects including M. sexta, structurally-related AT-like (ATL) peptides can be derived from alternatively spliced mRNAs transcribed from the AT gene. We have isolated a cDNA for an AT receptor (ATR) from M. sexta by a PCR-based approach using the sequence of the ATR from Bombyx mori. The sequence of the M. sexta ATR is similar to several G protein-coupled receptors from other insect species and to the mammalian orexin receptor. We demonstrate that the M. sexta ATR expressed in vertebrate cell lines is activated in a dose-responsive manner by Manse-AT and each Manse-ATL peptide in the rank order ATL-I > ATL-II > ATL-III > AT, and functional analysis in multiple cell lines suggest that the receptor is coupled through elevated levels of Ca(2+) and cAMP. In feeding larvae, Manse-ATR mRNA is present at highest levels in the Malpighian tubules, followed by the midgut, hindgut, testes, and corpora allata, consistent with its action on multiple target tissues. In the adult corpora cardiaca--corpora allata complex, Manse-ATR mRNA is present at relatively low levels in both sexes.
Collapse
Affiliation(s)
- Frank M Horodyski
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Go HJ, Jo EH, Seo JK, Hong YK, Lee HH, Kim GD, Park TW, Noga EJ, Park NG. Isolation and characterization of a novel myoactive tetradecapeptide-related peptide isolated from the brain of the squid, Todarodes pacificus. Peptides 2011; 32:447-53. [PMID: 21129428 DOI: 10.1016/j.peptides.2010.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 11/25/2022]
Abstract
A new bioactive tetradecapeptide, GFKDNVSNRIAHGFamide, was isolated from the brain of the squid, Todarodes pacificus. Using isolated T. pacificus esophagus as a bioassay, the peptide was shown to induce potent contraction of smooth muscle. The threshold concentration for contraction was 5×10(-10) M to 1×10(-9) M. The peptide was homologous to other molluskan (class Gastropoda) and annelid myoactive tetradecapeptides and to some extent, to arthropodan tridecapeptides. A full-length cDNA encoding the biosynthetic precursor of the active peptide was cloned, revealing that the peptide is probably secreted following processing of a prepropeptide containing a signal peptide and prosequences. This is the first myoactive tetradecapeptide (MATP) to be isolated from any mollusk of the class Cephalopoda and we have named it Todarodes tetradecapeptide (TTP).
Collapse
Affiliation(s)
- Hye-Jin Go
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, 599-1, Daeyeon 3-Dong, Nam-Gu, Busan 608-737, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Riccillo F, Ronderos J. Allatotropin expression during the development of the fourth instar larvae of the kissing-bug Triatoma infestans (Klüg). Tissue Cell 2010; 42:355-9. [DOI: 10.1016/j.tice.2010.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/13/2010] [Accepted: 07/20/2010] [Indexed: 11/30/2022]
|
30
|
Cardioacceleratory and myostimulatory activity of allatotropin in Triatoma infestans. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:371-7. [DOI: 10.1016/j.cbpa.2009.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/10/2009] [Accepted: 12/03/2009] [Indexed: 11/23/2022]
|
31
|
Santini MS, Ronderos JR. Daily variation of an allatotropin-like peptide in the Chagas disease vectorTriatoma infestans(klug). BIOL RHYTHM RES 2009. [DOI: 10.1080/09291010802214583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Neupert S, Schattschneider S, Predel R. Allatotropin-related peptide in cockroaches: identification via mass spectrometric analysis of single identified neurons. Peptides 2009; 30:489-94. [PMID: 19071174 DOI: 10.1016/j.peptides.2008.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/30/2008] [Accepted: 10/30/2008] [Indexed: 11/23/2022]
Abstract
The first insect allatotropin-related peptide (ATRP) was isolated from head extracts of the adult sphinx moth Manduca sexta [Kataoka H, Toschi A, Li JP, Carney RL, Schooley DA, Kramer SJ. Identification of an allatotropin from adult Manduca sexta. Science 1989;243:1481-3.]. Meanwhile ATRPs are known from different holometabolous insects but only a single ATRP could be identified from hemimetabolous insects [Paemen L, Tips A, Schoofs L, Proost P, Van Damme J, De Loof A. Lom-AG-myotropin: a novel myotropic peptide from the male accessory glands of Locusta migratoria. Peptides 1991;12:7-10.]. This means that the extensive analysis of neuropeptides from Leucophaea maderae and Periplaneta americana, which led to the discovery of many novel insect neuropeptides, did not result in the detection of any ATRP. In this study, we used another approach to find a cockroach ATRP by first identifying Manse-AT immunoreactive neurons in the terminal ganglion that can be stained by retrograde labeling and are suitable for dissection and subsequent mass spectrometric analysis. The peptidomic analysis of these putative ATRP neurons paved the way for the identification of the first cockroach ATRP. MALDI-TOF/TOF tandem mass spectrometry revealed a sequence identity with Locmi-AG-MT-1 which classifies this ATRP as a highly conserved neuropeptide. A mass spectrometric screening of the nervous system allowed the detection of ATRP-ion signals in different parts of the CNS of P. americana as well as L. maderae. The data obtained in this study will be incorporated in a map of peptidergic neurons from the CNS of the American cockroach, P. americana.
Collapse
Affiliation(s)
- Susanne Neupert
- Institute of General Zoology and Animal Physiology, Friedrich-Schiller-University Jena, Erbertstrasse 1, 07743 Jena, Germany.
| | | | | |
Collapse
|
33
|
Hamanaka Y, Tanaka S, Numata H, Shiga S. Morphological Characterization of Neurons Projecting to the Ring Gland in the Larval Blow Fly,Protophormia terraenovae. Zoolog Sci 2009; 26:227-37. [DOI: 10.2108/zsj.26.227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Santini MS, Ronderos JR. Allatotropin-like peptide in Malpighian tubules: insect renal tubules as an autonomous endocrine organ. Gen Comp Endocrinol 2009; 160:243-9. [PMID: 19118556 DOI: 10.1016/j.ygcen.2008.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 10/13/2008] [Accepted: 12/02/2008] [Indexed: 11/23/2022]
Abstract
Malpighian tubules (MTs) are recognised as the main excretory organ in insects, ensuring water and mineral balance. Haematophagous insects incorporate with each meal a large quantity of blood, producing a particularly large volume of urine in a few hours. In the present study, we report the presence of an allatotropin-like (AT-like) peptide in MTs of Triatoma infestans (Klug). The AT-like content in MTs decreased during the first hours after blood-intake, correlating with the post-prandial diuresis. In vivo artificial dilution of haemolymph showed a similar effect. Isolated MTs challenged with a diluted saline solution resulted in an autonomous and reversible response of the organ regulating the quantity of peptide released to the medium, and suggesting that MTs synthesise the AT-like peptide. While MTs are recognised as the target for several hormones, our results corroborate that they also have the ability to produce and secrete a hormone in an autonomous way.
Collapse
Affiliation(s)
- Maria Soledad Santini
- Centro Regional de Estudios Genomicos (CREG), Universidad Nacional de La Plata, Parque Tecnologico Florencio Varela, Buenos Aires, Argentina
| | | |
Collapse
|
35
|
Audsley N, Matthews HJ, Price NR, Weaver RJ. Allatoregulatory peptides in Lepidoptera, structures, distribution and functions. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:969-980. [PMID: 18377924 DOI: 10.1016/j.jinsphys.2008.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/18/2008] [Accepted: 01/22/2008] [Indexed: 05/26/2023]
Abstract
Allatoregulatory peptides either inhibit (allatostatins) or stimulate (allatotropins) juvenile hormone (JH) synthesis by the corpora allata (CA) of insects. However, these peptides are pleitropic, the regulation of JH biosynthesis is not their only function. There are currently three allatostatin families (A-, B-, and C-type allatostatins) that inhibit JH biosynthesis, and two structurally unrelated allatotropins. The C-type allatostatin, characterised by its blocked N-terminus and a disulphide bridge between its two cysteine residues, was originally isolated from Manduca sexta. This peptide exists only in a single from in Lepidoptera and is the only peptide that has been shown to inhibit JH synthesis by the CA in vitro in this group of insects. The C-type allatostatin also inhibits spontaneous contractions of the foregut. The A-type allatostatins, which exist in multiple forms in a single insect, have also been characterised from Lepidoptera. This family of peptides does not appear to have any regulatory effect on JH biosynthesis, but does inhibit foregut muscle contractions. Two structurally unrelated allatotropins stimulate JH biosynthesis in Lepidoptera. The first was identified in M. sexta (Manse-AT) and occurs in other moths. The second (Spofr AT2) has only been identified in Spodoptera frugiperda. Manduca sexta allatotropin also stimulates heart muscle contractions and gut peristalsis, and inhibits ion transport across the midgut of larval M. sexta. The C-terminal (amide) pentapeptide of Manse-AT is important for JH biosynthesis activity. The most active conformation of Manse-AS requires the disulphide bridge, although the aromatic residues also have a significant effect on biological activity. Both A- and C-type allatostatins and Manse-AT are localised in neurosecretory cells of the brain and are present in the corpora cardiaca, CA and ventral nerve cord, although variations in localisation exist in different moths and at different stages of development. The presence of Manse-AS and Manse-AT in the CA correlates with the biological activity of these peptides on JH biosynthesis. There is currently no explanation for the presence of A-type allatostatins in the CA. The three peptide types are also co-localised in neurosecretory cells of the frontal ganglion, and are present in the recurrent nerve that supplies the muscles of the gut, particularly the crop and stomodeal valve, in agreement with their role in the regulation of gut peristalsis. There is also evidence that they are expressed in the midgut and reproductive tissues.
Collapse
Affiliation(s)
- N Audsley
- Central Science Laboratory, Sand Hutton, York YO41 1LZ, UK.
| | | | | | | |
Collapse
|
36
|
Santini MS, Ronderos JR. Allatotropin-like peptide released by Malpighian tubules induces hindgut activity associated with diuresis in the Chagas disease vector Triatoma infestans (Klug). J Exp Biol 2007; 210:1986-91. [PMID: 17515423 DOI: 10.1242/jeb.004291] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SUMMARY
Haematophagous insects incorporate a large amount of blood with each meal,producing a big quantity of urine in a few hours to eliminate the excess water and Na+. Malpighian tubules (MTs) have traditionally been seen as a system that responds to neuroendocrine stimulus. In a related paper, we demonstrated that MTs of Triatoma infestans produce an autonomous endocrine secretion of an allatotropin-like (AT-like) peptide. In the present study, we report a myostimulatory activity of AT at the level of the hindgut(HG), associated with endocrine mechanisms regulating post-prandial diuresis. Allatotropin induced an increase in frequency and intensity of peristaltic contractions at the level of the HG. The release of the HG content in MTs–HG in vitro preparations undergoing an osmotic shock occurred at different times, depending on the number of MTs present, and there was no release in treatments without MTs. The application of an AT-antiserum to MTs–HG preparations undergoing osmotic shock produced a delay or a long-term blockade of diuresis, depending on the antiserum dilution applied. Similar results were obtained when AT-antiserum was applied in vivoprior to blood intake, decreasing the volume of urine eliminated during the first 2 h. Our results allow us to assign a specific endocrine function to the AT-like peptide released by MTs that is linked to the elimination of urine after blood meals.
Collapse
Affiliation(s)
- Maria Soledad Santini
- Centro Regional de Estudios Genomicos (CREG-UNLP) and Catedra Histol, Embriol, Animal (FCNyM-UNLP), La Plata, Argentina
| | | |
Collapse
|
37
|
Hernández-Martínez S, Mayoral JG, Li Y, Noriega FG. Role of juvenile hormone and allatotropin on nutrient allocation, ovarian development and survivorship in mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:230-4. [PMID: 17070832 PMCID: PMC2647715 DOI: 10.1016/j.jinsphys.2006.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/19/2006] [Accepted: 08/04/2006] [Indexed: 05/12/2023]
Abstract
Teneral reserves are utilized to initiate previtellogenic ovarian development in mosquitoes. Females having emerged with low teneral reserves have reduced juvenile hormone (JH) synthesis and previtellogenic development. We investigated what role JH, allatotropin (AT) and other head-factors play in the regulation of previtellogenic ovarian development and adult survivorship. Factors from the head are essential for corpora allata (CA) activation and reproductive maturation. We have shown that decapitation of females within 9-12h after adult ecdysis prevented normal development of the previtellogenic follicles; however maximum previtellogenic ovarian development could be induced in decapitated females by topically applying a JH analog. When females were decapitated 12 or more hours after emergence nutritional resources had been committed to ovarian development and survivorship was significantly reduced. To study if allatotropin levels correlated with teneral reserves, we measured AT titers in the heads of two adult phenotypes (large and small females) generated by raising larvae under different nutritional diets. In large mosquitoes AT levels increased to a maximum of 45 fmol in day 4; in contrast, the levels of allatotropin in the heads of small mosquitoes remained below 9 fmol during the 7 days evaluated. These results suggest that only when nutrients are appropriate, factors released from the brain induce the CA to synthesize enough JH to activate reproductive maturation.
Collapse
Affiliation(s)
- Salvador Hernández-Martínez
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Centro de Investigaciones Sobre Enfermedades Infecciosas, INSP, Cuernavaca, Morelos 62100, México
| | - Jaime G. Mayoral
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Yiping Li
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Fernando G. Noriega
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Corresponding author. Tel.: +1 305 348 6632; fax: +1 305 348 1986. E-mail address: (F.G. Noriega)
| |
Collapse
|
38
|
Rachinsky A, Mizoguchi A, Srinivasan A, Ramaswamy SB. Allatotropin-like peptide in Heliothis virescens: tissue localization and quantification. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 62:11-25. [PMID: 16612808 DOI: 10.1002/arch.20117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mating-induced increase in juvenile hormone (JH) biosynthesis in Heliothis virescens females may be stimulated by production and/or release of stimulatory neuropeptides such as allatotropins (AT). Although there is evidence that H. virescens allatotropin may be structurally related to Manduca sexta allatotropin (Manse-AT), little is known of its occurrence and distribution in H. virescens. An enzyme-linked immunosorbent assay (ELISA) using a monoclonal antibody against Manse-AT was used to quantify concentrations of Manse-AT immunoreactivity in tissue extracts of H. virescens. In mated females, the highest concentrations of Manse-AT-like material occurred in the brain. The ventral nervous system and the accessory glands also contained considerable amounts of Manse-AT-like material, whereas concentrations were very low in ovaries, fat body, and flight muscle. The Manse-AT antibody was used for whole-mount immunocytochemistry to localize Manse-AT-immunoreactivity in the central nervous system. Several groups of Manse-AT-immunoreactive cells were discovered in the brain, subesophageal ganglion, and thoracic and abdominal ganglia of H. virescens females and males. Strong immunoreactivity was detected in axons going through the corpora cardiaca and branching out over the surface of the corpora allata. The presence of Manse-AT-like material in various locations in the central nervous system suggests that these peptides may have other as yet unknown functions. At the posterior margin of the terminal ganglion of males, a group of large immunoreactive cells was observed that was not present in females. Other than that, there were no obvious differences between virgin and mated females or males. The lack of differences in AT distribution in mated and virgin females suggests that mating-induced differences in female JH biosynthesis rates may be caused by changes in cellular response to AT at the level of the CA, rather than by changes in the amounts of AT acting on the CA.
Collapse
Affiliation(s)
- Anna Rachinsky
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA.
| | | | | | | |
Collapse
|
39
|
Rankin SM, Kwok R, Seymour ML, Shaon Rahman U, Tobe SS. Effects of Manduca allatotropin and localization of Manduca allatotropin-immunoreactive cells in earwigs. Comp Biochem Physiol B Biochem Mol Biol 2005; 142:113-22. [PMID: 16019245 DOI: 10.1016/j.cbpc.2005.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/14/2005] [Accepted: 06/17/2005] [Indexed: 11/23/2022]
Abstract
Manduca sexta allatotropin (Manse-AT) was first isolated on the basis of its ability to stimulate production of juvenile hormone in that insect. We examined whether this neuropeptide affects corpus allatum activity and visceral muscle contraction in adult females of the earwig, Euborellia annulipes. We also assessed the presence of allatotropin-like material in tissues using immunocytochemistry. Manse-AT at 1 nM to 10 muM stimulated juvenile hormone production in vitro by glands of low activity from 2-day virgin females. In glands of high activity from 12-day mated females, 1 and 100 nM allatotropin were effective, but 10 muM was not. Similarly, hindguts of 2-day and 12-day females significantly increased in motility in vitro in response to Manse-AT. A monoclonal antibody to Manse-AT was used to demonstrate allatotropin-like material throughout the nervous system of 2-day, virgin females. Immunoreactivity was most pronounced within varicosities of the corpora cardiaca and perisympathetic organs. No immunofluorescence was observed in gut tissue. Lastly, we showed that extract of retrocerebral complexes also enhanced in vitro hindgut motility from 2-day virgin females, in a dose-dependent manner. These results indicate material similar to M. sexta allatotropin in female earwigs and that such peptides may modulate juvenile hormone biosynthesis and visceral muscle contractions. Sensitivity to the peptides may change with physiological stage.
Collapse
Affiliation(s)
- Susan M Rankin
- Department of Biology, Allegheny College, Meadville, PA 16335, USA.
| | | | | | | | | |
Collapse
|
40
|
Hernández-Martínez S, Li Y, Lanz-Mendoza H, Rodríguez MH, Noriega FG. Immunostaining for allatotropin and allatostatin-A and -C in the mosquitoes Aedes aegypti and Anopheles albimanus. Cell Tissue Res 2005; 321:105-13. [PMID: 15909164 PMCID: PMC2647714 DOI: 10.1007/s00441-005-1133-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
Confocal laser-scanning microscopy was used to carry out a comparative study of the immunostaining for three families of neuropeptides, viz., allatostatin-A (AS-A), allatostatin-C (AS-C) and allatotropin (AT), in adult female mosquitoes of Aedes aegypti and Anopheles albimanus. The specific patterns of immunostaining for each of the three peptides were similar in both species. The antisera raised against AT, AS-A, and AS-C revealed intense immunoreactivity in the cells of each protocerebral lobe of the brain and stained cells in each of the ventral ganglia and neuronal projections innervating various thoracic and abdominal tissues. Only the AS-A antiserum labeled immunoreactive endocrine cells in the midgut. The distribution of the peptides supports the concept that they play multiple regulatory roles in both species.
Collapse
Affiliation(s)
- Salvador Hernández-Martínez
- Department of Biological Sciences, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | | | | | | | | |
Collapse
|
41
|
Glasscock JM, Mizoguchi A, Rachinsky A. Immunocytochemical localization of an allatotropin in developmental stages of Heliothis virescens and Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:345-55. [PMID: 15890177 DOI: 10.1016/j.jinsphys.2004.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2004] [Revised: 11/30/2004] [Accepted: 12/20/2004] [Indexed: 05/02/2023]
Abstract
Juvenile hormone biosynthesis by the corpora allata is regulated by stimulatory neuropeptides called allatotropins and inhibitory neuropeptides called allatostatins. This study localized Manduca sexta allatotropin-like material in developmental stages of the noctuid moth Heliothis virescens and the honeybee Apis mellifera. Immunocytochemical methods using both fluorescence-tagged antibodies and enzyme-coupled antibodies were used to stain the central nervous tissue of both species. H. virescens contains M. sexta allatotropin (Manse-AT)-like material consistently throughout larval development. The distribution patterns of Manse-AT immunoreactive cell bodies in the CNS persisted from one larval instar to the next. It will be discussed how larval Manse-AT distribution patterns differed from those in adults. The total number of AT-containing cells in brain and subesophageal ganglion gradually increased during larval development, whereas in the thoracic and abdominal ganglia, the number of AT-containing neurons remained constant. In the honeybee A. mellifera, Manse-AT immunoreactive cells were only found in a few brains from late last instar larvae (prepupae). Manse-AT-like material was present in a group of 6-8 cells in the pars intercerebralis. However, we did not find any Manse-AT-like material in brains of early last instar larvae, whose corpora allata (CA) are more sensitive to in vitro stimulation by Manse-AT than prepupal CA.
Collapse
Affiliation(s)
- Julie M Glasscock
- Department of Biology, University of Minnesota Duluth, 211 Life Science Building, 55812, USA
| | | | | |
Collapse
|
42
|
Onken H, Moffett SB, Moffett DF. The anterior stomach of larval mosquitoes (Aedes aegypti): effects of neuropeptides on transepithelial ion transport and muscular motility. ACTA ACUST UNITED AC 2005; 207:3731-9. [PMID: 15371480 DOI: 10.1242/jeb.01208] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present investigation studied the influence of a number of neuropeptides on semi-open preparations of the isolated and perfused anterior stomach of larval Aedes aegypti. Effects of peptides were observed on the lumen negative transepithelial voltage (Vte) that is present with serotonin in the bath; this voltage most likely reflects active HCO3- secretion involved in alkalization of the larval anterior stomach. The five different A. aegypti allatostatins (allatostatin A 1-5) all affected Vte in almost identical ways, causing a 10-15% reduction of the voltage at 10(-7) mol l(-1). A. aegypti neuropeptide F and proctolin reduced Vte at submicromolar concentrations. At 10(-6) mol l(-1), neuropeptide F reduced Vte by 30% and proctolin reduced Vte by 50%. In contrast, A. aegypti allatotropin, A. aegypti head peptides I and III and A. aegypti short neuropeptide F were without effect on Vte. During the investigation it was observed that the peristaltic contractions of the preparations caused a dynamic component of Vte. Peristaltic contractions and the correlated voltage fluctuations depended on the presence of serotonin. Peristaltic activity and Vte deflections were progressively inhibited by A. aegypti head peptides I and III by A. aegypti short neuropeptide F and by A. aegypti neuropeptide F when the peptide concentrations were increased from 10(-8) to 10(-6) mol l(-1). These observations show that physiological concentrations of some of the tested neuropeptides affect two processes that require coordination: ion transport and motility of the larval anterior stomach.
Collapse
Affiliation(s)
- H Onken
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | |
Collapse
|
43
|
Homberg U, Brandl C, Clynen E, Schoofs L, Veenstra JA. Mas-allatotropin/Lom-AG-myotropin I immunostaining in the brain of the locust, Schistocerca gregaria. Cell Tissue Res 2004; 318:439-57. [PMID: 15480799 DOI: 10.1007/s00441-004-0913-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2003] [Accepted: 05/03/2004] [Indexed: 11/26/2022]
Abstract
Mas-allatotropin (Mas-AT) and Lom-accessory gland-myotropin I (Lom-AG-MTI) are two members of a conserved family of insect neuropeptides, collectively termed allatotropins, which have diverse functions, ranging from stimulation of juvenile hormone secretion to myotropic effects on heart and hindgut. In addition, allatotropins appear to be abundant within the nervous system, suggesting neuroactive roles. To identify neurons in the insect brain suitable for a neurophysiological analysis of the roles of allatotropins, we used antisera against Mas-AT and Lom-AG-MTI to map allatotropin-immunoreactive neurons in the brain of a suitable insect, the locust Schistocerca gregaria. Both antisera revealed basically identical staining patterns throughout the locust brain with more than 12,500 immunostained interneurons per brain hemisphere. Neurosecretory cells were not labeled, and the retrocerebral complex was devoid of immunostaining. Prominent immunoreactive cell types include about 9,600 lamina monopolar neurons, medulla to lobula interneurons, local neurons of the antennal lobe, a giant interneuron of the mushroom body, projection neurons of the glomerular lobe to the mushroom body, and three systems of tangential neurons of the central complex. Several groups of neurons showed colocalization of Mas-AT- and gamma-aminobutyric acid immunostaining. Mass spectrometric analysis identified a peptide with a molecular mass identical to Lom-AG-MTI in all major parts of the locust brain but not in the retrocerebral complex. This study strongly suggests that Lom-AG-MTI is highly abundant in the locust brain, and is likely to play a neuroactive role in many brain circuits including all stages of sensory processing, learning and memory, and higher levels of motor control.
Collapse
Affiliation(s)
- Uwe Homberg
- Fachbereich Biologie/Tierphysiologie, Universität Marburg, 35032 Marburg, Germany.
| | | | | | | | | |
Collapse
|
44
|
Abdel-Latief M, Meyering-Vos M, Hoffmann KH. Expression and localization of the Spodoptera frugiperda allatotropin (Spofr-AT) and allatostatin (Spofr-AS) genes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 55:188-199. [PMID: 15027073 DOI: 10.1002/arch.10130] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Manduca sexta allatotropin and allatostatin were the first corpora allata (CA) regulating neuropeptides identified from Lepidoptera. Recently, we cloned the allatotropin (Spofr-AT) and the allatostatin (Spofr-AS) genes from the fall armyworm Spodoptera frugiperda. Using one-step RT-PCR for semi-quantification of the gene expression, we now demonstrate that three mRNA isoforms of the Spofr-AT gene and the Spofr-AS gene are expressed in brain, digestive tract, and reproductive organs of larvae, pupae, and adults in a time- and tissue-specific manner. Expression rates in the brain and in various parts of the digestive tract prove the dual role of the peptides as brain/gut (neuro)peptides. The functional meaning of ovarian and testes expression of the genes is not yet clear, although myoregulatory properties of the peptides are probable. The tissue-specific localization of the prohormone expression, as demonstrated by whole mount in situ hybridization, confirms the overall distribution of the prohormones as shown by RT-PCR and supports the pleiotropic functions of the peptides.
Collapse
|
45
|
Borovsky D, Meola SM. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 55:124-139. [PMID: 14981657 DOI: 10.1002/arch.10132] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Trypsin and chymotrypsin-like enzymes were detected in the gut of Aedes aegypti in the four larval instar and pupal developmental stages. Although overall the amount of trypsin synthesized in the larval gut was 2-fold higher than chymotrypsin, both enzymes are important in food digestion. Feeding Aea-Trypsin Modulating Oostatic Factor (TMOF) to Ae. aegypti and Culex quinquefasciatus larvae inhibited trypsin biosynthesis in the larval gut, stunted larval growth and development, and caused mortality. Aea-TMOF induced mortality in Ae. aegypti, Cx. quinquefasciatus, Culex nigripalpus, Anopheles quadrimaculatus, and Aedes taeniorhynchus larvae, indicating that many mosquito species have a TMOF-like hormone. The differences in potency of TMOF on different mosquito species suggest that analogues in other species are similar but may differ in amino acid sequence or are transported differently through the gut. Feeding of 29 different Aea-TMOF analogues to mosquito larvae indicated that full biological activity of the hormone is achieved with the tetrapeptide YDPA. Using cytoimmunochemical analysis, intrinsic TMOF was localized to ganglia of the central nervous system in larvae and male and female Ae. aegypti adults. The subesophageal, thoracic, and abdominal ganglia of both larval and adult mosquitoes contained immunoreactive cells. Immunoreactive cells were absent in the corpus cardiacum of newly molted 4th instar larvae but were found in late 4th instar larvae. In both males and females, the intrinsic neurosecretory cells of the corpus cardiacum were filled with densely stained immunoreactive material. These results indicate that TMOF-immunoreactive material is synthesized in sugar-fed male and female adults and larvae by the central nervous system cells.
Collapse
Affiliation(s)
- Dov Borovsky
- University of Florida-IFAS, Florida Medical Entomology Laboratory, Vero Beach, 32962, USA.
| | | |
Collapse
|
46
|
Elekonich MM, Horodyski FM. Insect allatotropins belong to a family of structurally-related myoactive peptides present in several invertebrate phyla. Peptides 2003; 24:1623-32. [PMID: 14706542 DOI: 10.1016/j.peptides.2003.08.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Originally named for its ability to stimulate juvenile hormone production by lepidopteran corpora allata, allatotropin has emerged as a neuropeptide with multiple neural, endocrine and myoactive roles. This paper describes the experimental evidence for allatotropin action, its localization in several species of insects, and its multiple effects on a variety of different tissues that lead to increased hemolymph circulation and gut motility. The overall physiological effects may also include species-specific effects such as the regulation of nutrient absorption, modulation of the circadian cycle and migratory preparedness. In addition, we present evidence suggesting that allatotropins are members of a family of myoactive peptides found in several invertebrate phyla. Finally, we speculate that the myoactive properties of allatotropins are basal and it is likely that the stimulatory action of allatotropins on juvenile hormone synthesis evolved secondarily.
Collapse
Affiliation(s)
- Michelle M Elekonich
- Department of Biomedical Sciences and the College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
47
|
Li Y, Unnithan GC, Veenstra JA, Feyereisen R, Noriega FG. Stimulation of JH biosynthesis by the corpora allata of adult female Aedes aegypti in vitro: effect of farnesoic acid and Aedes allatotropin. J Exp Biol 2003; 206:1825-32. [PMID: 12728004 DOI: 10.1242/jeb.00371] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have demonstrated that the synthesis of juvenile hormone (JH) by the isolated corpora allata (CA) complex in vitro as well as the JH titer in the yellow fever mosquito Aedes aegypti are elevated before feeding and low after a blood meal. In the present study, we used an in vitro radiochemical assay to analyze the effect of farnesoic acid (FA) and Aedes allatotropin (Aedes-AT) on the biosynthesis of JH and methyl farnesoate (MF) by the isolated CA complex of A. aegypti adult female. CA complex from day-0 females (0-1 h after emergence) exhibited a low basal juvenile hormone III (JH III) biosynthetic activity and did not respond to either allatotropic or FA stimulation. However, incubation of CA complexes from newly emerged females with Aedes-AT plus FA resulted in very high production of JH III. This is the first report suggesting that allatotropin makes corpora allata in newly emerged females capable for JH biosynthesis. When we studied CA complexes dissected from females 1 day after emergence, the stimulatory action of Aedes-AT was strong and dose-dependent, with maximum stimulation in the range of 10(-8)-10(-9) mol l(-1), suggesting that Aedes-AT is indeed a true allatotropin (a molecule with allatotropic activity) in A. aegypti. The addition to the culture medium of 40 micro mol l(-1) FA, a JH precursor, resulted in a 9-fold increase in JH III biosynthesis in 2-, 4- and 6-day-old sugar-fed females. The two major labeled products synthesized by the stimulated CA complex were identified as JH III and MF by RP-HPLC and GC-MS. Treatment of CA complexes with FA, but not Aedes-AT, resulted in an increase in MF. Application of both Aedes-AT and FA to the CA complexes of 2-, 4- and 6-day-old females resulted in the same effects as FA alone. These data suggest that in sugar-fed females, FA and Aedes-AT exert different effects on the terminal steps in JH biosynthesis.
Collapse
Affiliation(s)
- Yiping Li
- Department of Biochemistry and Molecular Biophysics and Center for Insect Science, University of Arizona, Tucson, AZ 85721-0088, USA
| | | | | | | | | |
Collapse
|
48
|
Abdel-latief M, Meyering-Vos M, Hoffmann KH. Molecular characterisation of cDNAs from the fall armyworm Spodoptera frugiperda encoding Manduca sexta allatotropin and allatostatin preprohormone peptides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:467-476. [PMID: 12706626 DOI: 10.1016/s0965-1748(03)00005-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Allatotropin (AT) is a 13-residue amidated neuropeptide, first isolated from pharate adult heads of the tobacco hornworm, Manduca sexta (Manse-AT), which strongly stimulates the biosynthesis of juvenile hormones (JH) in the corpora allata (CA) of adult moths. In Spodoptera frugiperda, a cDNA that encodes 134 amino acids, including an AT peptide, has been cloned. The S. frugiperda allatotropin mature peptide (Spofr-AT) [GFKNVEMMTARGFa] is identical to that isolated from M. sexta. The basic organization of the Spofr-AT precursor is similar to that of Agrius convolvuli, M. sexta, Pseudaletia unipuncta, and Bombyx mori with 83-93% amino acid sequence identity. The Spofr-AT gene is expressed in at least three mRNA isoforms with 134, 171 and 200 amino acids, differing from each other by alternative splicing. All allatostatins (AS) have an inhibitory action on the JH biosynthesis in the CA. A cDNA that encodes 125 amino acid residues including one copy of the Manse-AS peptide has been cloned from S. frugiperda (Spofr-AS; QVRFRQCYFNPISCF). The basic organization of the Spofr-AS precursor is similar to that of P. unipuncta with 85% amino acid sequence identity. Using one step RT-PCR for semi-quantification of the gene expression, we showed that the three mRNAs of the Spofr-AT gene and the Spofr-AS gene are expressed in brains of last instar larvae, prepupae, pupae, and adults of both sexes of S. frugiperda with variable intensity.
Collapse
Affiliation(s)
- M Abdel-latief
- Department of Animal Ecology I, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
49
|
Affiliation(s)
- Paul H Taghert
- Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
50
|
Lee KY, Chamberlin ME, Horodyski FM. Biological activity of Manduca sexta allatotropin-like peptides, predicted products of tissue-specific and developmentally regulated alternatively spliced mRNAs. Peptides 2002; 23:1933-41. [PMID: 12431731 DOI: 10.1016/s0196-9781(02)00181-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The insect neuropeptide, allatotropin (Manse-AT), exerts multiple functions including the stimulation of juvenile hormone (JH) biosynthesis in adults and the inhibition of active ion transport across the midgut epithelium of feeding larvae. The Manse-AT gene is expressed in multiple regions of the nervous system as three mRNAs that differ by alternative splicing. The specific mRNA isoform present differs in a tissue- and developmental-specific manner thus providing a mechanism for the regulated production of peptides specific to each isoform. These peptides are predicted to include three allatotropin-like (Manse-ATL) peptides that exhibit limited structural identity to Manse-AT and overlapping biological activities.
Collapse
Affiliation(s)
- Kyeong-Yeoll Lee
- Department of Biomedical Sciences and the College of Osteopathic Medicine, 228 Irvine Hall, Ohio University, Athens 45701, USA
| | | | | |
Collapse
|