1
|
Wu C, Hsieh K, Yeh S, Lu Y, Chen L, Ku MSB, Li W. Simultaneous detection of miRNA and mRNA at the single-cell level in plant tissues. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:136-149. [PMID: 36148792 PMCID: PMC9829392 DOI: 10.1111/pbi.13931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Detecting the simultaneous presence of a microRNA (miRNA) and a mRNA in a specific tissue can provide support for the prediction that the miRNA regulates the mRNA. Although two such methods have been developed for mammalian tissues, they have a low signal-noise ratio and/or poor resolution at the single-cell level. To overcome these drawbacks, we develop a method that uses sequence-specific miRNA-locked nucleic acid (LNA) and mRNA-LNA probes. Moreover, it augments the detection signal by rolling circle amplification, achieving a high signal-noise ratio at the single-cell level. Dot signals are counted for determining the expression levels of mRNA and miRNA molecules in specific cells. We show a high sequence specificity of our miRNA-LNA probe, revealing that it can discriminate single-base mismatches. Numerical quantification by our method is tested in transgenic rice lines with different gene expression levels. We conduct several applications. First, the spatial expression profiling of osa-miR156 and OsSPL12 in rice leaves reveals their specific expression in mesophyll cells. Second, studying rice and its mutant lines with our method reveals opposite expression patterns of miRNA and its target mRNA in tissues. Third, the dynamic expression profiles of ZmGRF8 and zma-miR396 during maize leaf development provide evidence that zma-miR396 regulates the preferential spatial expression of ZmGRF8 in bundle sheath cells. Finally, our method can be scaled up to simultaneously detect multiple miRNAs and mRNAs in a tissue. Thus, it is a sensitive and versatile technique for studying miRNA regulation of plant tissue development.
Collapse
Affiliation(s)
- Chi‐Chih Wu
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| | | | - Su‐Ying Yeh
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| | - Yen‐Ting Lu
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| | - Liang‐Jwu Chen
- Institute of Molecular Biology, National Chung Hsing UniversityTaichungTaiwan
| | - Maurice S. B. Ku
- Department of Agricultural BiotechnologyNational Chiayi UniversityChaiyiTaiwan
- School of Biological SciencesWashington State UniversityPullmanWAUSA
| | - Wen‐Hsiung Li
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Department of Ecology and EvolutionUniversity of ChicagoChicagoILUSA
| |
Collapse
|
2
|
Kulikova IV. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542108007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Weissensteiner MH, Bunikis I, Catalán A, Francoijs KJ, Knief U, Heim W, Peona V, Pophaly SD, Sedlazeck FJ, Suh A, Warmuth VM, Wolf JBW. Discovery and population genomics of structural variation in a songbird genus. Nat Commun 2020; 11:3403. [PMID: 32636372 PMCID: PMC7341801 DOI: 10.1038/s41467-020-17195-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Structural variation (SV) constitutes an important type of genetic mutations providing the raw material for evolution. Here, we uncover the genome-wide spectrum of intra- and interspecific SV segregating in natural populations of seven songbird species in the genus Corvus. Combining short-read (N = 127) and long-read re-sequencing (N = 31), as well as optical mapping (N = 16), we apply both assembly- and read mapping approaches to detect SV and characterize a total of 220,452 insertions, deletions and inversions. We exploit sampling across wide phylogenetic timescales to validate SV genotypes and assess the contribution of SV to evolutionary processes in an avian model of incipient speciation. We reveal an evolutionary young (~530,000 years) cis-acting 2.25-kb LTR retrotransposon insertion reducing expression of the NDP gene with consequences for premating isolation. Our results attest to the wealth and evolutionary significance of SV segregating in natural populations and highlight the need for reliable SV genotyping.
Collapse
Affiliation(s)
- Matthias H Weissensteiner
- Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, 752 36, Uppsala, Sweden.
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.
- Department of Biology, Pennsylvania State University, 310 Wartik Lab, University Park, PA, 16802, USA.
| | - Ignas Bunikis
- Uppsala Genome Center, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, BMC, Box 815, 752 37, Uppsala, Sweden
| | - Ana Catalán
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | | | - Ulrich Knief
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Wieland Heim
- Institute of Landscsape Ecology, University of Münster, Heisenbergstrasse 2, 48149, Münster, Germany
| | - Valentina Peona
- Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, 752 36, Uppsala, Sweden
- Department of Organismal Biology - Systematic Biology, Uppsala University, 752 36, Uppsala, Sweden
| | - Saurabh D Pophaly
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center at Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Alexander Suh
- Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, 752 36, Uppsala, Sweden
- Department of Organismal Biology - Systematic Biology, Uppsala University, 752 36, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| | - Vera M Warmuth
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Jochen B W Wolf
- Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, 752 36, Uppsala, Sweden.
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
4
|
Recent introgression between Taiga Bean Goose and Tundra Bean Goose results in a largely homogeneous landscape of genetic differentiation. Heredity (Edinb) 2020; 125:73-84. [PMID: 32451423 PMCID: PMC7413267 DOI: 10.1038/s41437-020-0322-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Several studies have uncovered a highly heterogeneous landscape of genetic differentiation across the genomes of closely related species. Specifically, genetic differentiation is often concentrated in particular genomic regions (“islands of differentiation”) that might contain barrier loci contributing to reproductive isolation, whereas the rest of the genome is homogenized by introgression. Alternatively, linked selection can produce differentiation islands in allopatry without introgression. We explored the influence of introgression on the landscape of genetic differentiation in two hybridizing goose taxa: the Taiga Bean Goose (Anser fabalis) and the Tundra Bean Goose (A. serrirostris). We re-sequenced the whole genomes of 18 individuals (9 of each taxon) and, using a combination of population genomic summary statistics and demographic modeling, we reconstructed the evolutionary history of these birds. Next, we quantified the impact of introgression on the build-up and maintenance of genetic differentiation. We found evidence for a scenario of allopatric divergence (about 2.5 million years ago) followed by recent secondary contact (about 60,000 years ago). Subsequent introgression events led to high levels of gene flow, mainly from the Tundra Bean Goose into the Taiga Bean Goose. This scenario resulted in a largely undifferentiated genomic landscape (genome-wide FST = 0.033) with a few notable differentiation peaks that were scattered across chromosomes. The summary statistics indicated that some peaks might contain barrier loci while others arose in allopatry through linked selection. Finally, based on the low genetic differentiation, considerable morphological variation and incomplete reproductive isolation, we argue that the Taiga and the Tundra Bean Goose should be treated as subspecies.
Collapse
|
5
|
Bruders R, Van Hollebeke H, Osborne EJ, Kronenberg Z, Maclary E, Yandell M, Shapiro MD. A copy number variant is associated with a spectrum of pigmentation patterns in the rock pigeon (Columba livia). PLoS Genet 2020; 16:e1008274. [PMID: 32433666 PMCID: PMC7239393 DOI: 10.1371/journal.pgen.1008274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Rock pigeons (Columba livia) display an extraordinary array of pigment pattern variation. One such pattern, Almond, is characterized by a variegated patchwork of plumage colors that are distributed in an apparently random manner. Almond is a sex-linked, semi-dominant trait controlled by the classical Stipper (St) locus. Heterozygous males (ZStZ+ sex chromosomes) and hemizygous Almond females (ZStW) are favored by breeders for their attractive plumage. In contrast, homozygous Almond males (ZStZSt) develop severe eye defects and often lack plumage pigmentation, suggesting that higher dosage of the mutant allele is deleterious. To determine the molecular basis of Almond, we compared the genomes of Almond pigeons to non-Almond pigeons and identified a candidate St locus on the Z chromosome. We found a copy number variant (CNV) within the differentiated region that captures complete or partial coding sequences of four genes, including the melanosome maturation gene Mlana. We did not find fixed coding changes in genes within the CNV, but all genes are misexpressed in regenerating feather bud collar cells of Almond birds. Notably, six other alleles at the St locus are associated with depigmentation phenotypes, and all exhibit expansion of the same CNV. Structural variation at St is linked to diversity in plumage pigmentation and gene expression, and thus provides a potential mode of rapid phenotypic evolution in pigeons. The genetic changes responsible for different animal color patterns are poorly understood, due in part to a paucity of research organisms that are both genetically tractable and phenotypically diverse. Domestic pigeons (Columba livia) have been artificially selected for many traits, including an enormous variety of color patterns that are variable both within and among different breeds of this single species. We investigated the genetic basis of a sex-linked color pattern in pigeons called Almond that is characterized by a sprinkled pattern of plumage pigmentation. Pigeons with one copy of the Almond allele have desirable color pattern; however, male pigeons with two copies of the Almond mutation have severely depleted pigmentation and congenital eye defects. By comparing the genomes of Almond and non-Almond pigeons, we discovered that Almond pigeons have extra copies of a chromosome region that contains a gene that is critical for the formation of pigment granules. We also found that different numbers of copies of this region are associated with varying degrees of pigment reduction. The Almond phenotype in pigeons bears a remarkable resemblance to Merle coat color mutants in dogs, and our new results from pigeons suggest that similar genetic mechanisms underlie these traits in both species. Our work highlights the role of gene copy number variation as a potential driver of rapid phenotypic evolution.
Collapse
Affiliation(s)
- Rebecca Bruders
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Hannah Van Hollebeke
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Edward J. Osborne
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Zev Kronenberg
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Emily Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
6
|
Knief U, Bossu CM, Saino N, Hansson B, Poelstra J, Vijay N, Weissensteiner M, Wolf JBW. Epistatic mutations under divergent selection govern phenotypic variation in the crow hybrid zone. Nat Ecol Evol 2019; 3:570-576. [PMID: 30911146 PMCID: PMC6445362 DOI: 10.1038/s41559-019-0847-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
The evolution of genetic barriers opposing inter-specific gene flow is key to the origin of new species. Drawing from information of over 400 admixed genomes sourced from replicate transects across the European hybrid zone between all-black carrion crows and grey-coated hooded crows, we decipher the interplay between phenotypic divergence and selection at the molecular level. Over 68% of plumage variation was explained by epistasis between the gene NDP and a ~2.8 Mb region on chromosome 18 with suppressed recombination. Both pigmentation loci showed evidence for divergent selection resisting introgression. This study reveals how few, large-effect loci can govern prezygotic isolation and shield phenotypic divergence from gene flow.
Collapse
Affiliation(s)
- Ulrich Knief
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munich, Germany
| | - Christen M Bossu
- Science for Life Laboratories and Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden.,Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden.,Institute of the Environment and Sustainability, Center for Tropical Research, University of California, Los Angeles, CA, USA
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Jelmer Poelstra
- Science for Life Laboratories and Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden.,Biology Department, Duke University, Durham, NC, USA
| | - Nagarjun Vijay
- Science for Life Laboratories and Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden.,Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Matthias Weissensteiner
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munich, Germany.,Science for Life Laboratories and Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munich, Germany. .,Science for Life Laboratories and Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|