1
|
Lyons SA, McClelland GB. Commentary: Tracing the fate of metabolic substrates during changes in whole-body energy expenditure in mice. Comp Biochem Physiol B Biochem Mol Biol 2024; 274:111008. [PMID: 39059702 DOI: 10.1016/j.cbpb.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
For small mammals, such as mice, cannulation procedures can be quite challenging, limiting research associated with tracing isotopically labelled substrates at the whole-animal level. When cannulation in mice is possible, assessment of substrate use is further limited to when mice are either under anesthesia or are at rest, as there are no studies directly quantifying substrate use during exercise in mice. The use of isotopic tracer techniques has greatly advanced our knowledge in understanding how metabolic substrates (carbohydrates, amino acids, and fatty acids) contribute to whole-body metabolism. However, research regarding tissue-specific fuel use contributions to whole-body energy expenditure in mice at varying metabolic intensities (i.e., exercise) is lacking, despite the popularity of using mice in a variety of metabolic models. In this commentary, we briefly discuss the methodologies, advantages, and disadvantages of using radiolabelled, positron emission, and stable isotopes with a specific focus on fatty acids. We highlight recent mouse studies that have used creative experimental designs employing the use of isotopic tracer techniques and we briefly discuss how these methodologies can be further pursued to deepen our understanding of substrate use during exercise. Lastly, we show findings of a recent study we performed using a radiolabelled fatty acid tracer (14C-bromopalmitic acid) to determine fatty acid uptake in 16 muscles, two brown and two white adipose tissue depots during submaximal exercise in deer mice.
Collapse
Affiliation(s)
- Sulayman A Lyons
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
2
|
Cigler P, Davis LR, Gmür SL, Clauss M, Hatt JM, Ohlerth S, Mastromonaco G, Kummrow M. Evidence for seasonal shift in the reproduction of Aldabra giant tortoises (Aldabrachelys gigantea) in managed care in the Northern hemisphere compared to the natural habitat in the Southern hemisphere. Zoo Biol 2024; 43:458-469. [PMID: 38973722 DOI: 10.1002/zoo.21851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Ex situ breeding constitutes an important tool for species conservation; however, many reptile species are not managed sustainably under human care due to poor fecundity in ex situ settings. In this study, we tested whether the translocation of a seasonally reproducing species to a different environment results in decoupling of extrinsic signals and intrinsic conditions. The endocrinological patterns of plasma steroid sex hormones, follicular development, and mating behaviour of two female and two male sexually mature Aldabra tortoises (Aldabrachelys gigantea) in a zoological institution in the Northern hemisphere was aligned with enclosure climate data (mean monthly daylight duration, temperature, and precipitation) and compared with respective hormone patterns of wild individuals and climate conditions in the native habitat on the Aldabra Atoll in the Southern hemisphere. Whereas occurrence of mating behaviour was not considered a limiting factor, lack of ovulation and subsequent follicular atresia was the main reason for the lack of reproductive output. While it was impossible to elucidate the triggering factors of ovulation and the multifactorial complexity of reproduction was not fully addressed, this study indicates suboptimal temperature conditions and relative temporal shifts of interacting external triggers (temperature and photoperiod) in the zoo setting.
Collapse
Affiliation(s)
- Pia Cigler
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stefanie Ohlerth
- Clinic for Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Maya Kummrow
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Hardison EA, Eliason EJ. Diet effects on ectotherm thermal performance. Biol Rev Camb Philos Soc 2024; 99:1537-1555. [PMID: 38616524 DOI: 10.1111/brv.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
The environment is changing rapidly, and considerable research is aimed at understanding the capacity of organisms to respond. Changes in environmental temperature are particularly concerning as most animals are ectothermic, with temperature considered a key factor governing their ecology, biogeography, behaviour and physiology. The ability of ectotherms to persist in an increasingly warm, variable, and unpredictable future will depend on their nutritional status. Nutritional resources (e.g. food availability, quality, options) vary across space and time and in response to environmental change, but animals also have the capacity to alter how much they eat and what they eat, which may help them improve their performance under climate change. In this review, we discuss the state of knowledge in the intersection between animal nutrition and temperature. We take a mechanistic approach to describe nutrients (i.e. broad macronutrients, specific lipids, and micronutrients) that may impact thermal performance and discuss what is currently known about their role in ectotherm thermal plasticity, thermoregulatory behaviour, diet preference, and thermal tolerance. We finish by describing how this topic can inform ectotherm biogeography, behaviour, and aquaculture research.
Collapse
Affiliation(s)
- Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, 93106, USA
| |
Collapse
|
4
|
Benson DM, DeNardo DF. Effects of thermophily-relevant temperature variation and sex on digestive performance in pythons. Comp Biochem Physiol A Mol Integr Physiol 2024; 293:111636. [PMID: 38574988 DOI: 10.1016/j.cbpa.2024.111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Different physiological performances are often optimized at slightly varying temperatures, which can lead to ectotherms selecting higher body temperatures during certain physiological efforts (e.g., digestion, reproduction). Such thermophilic responses can lead to temperature-based tradeoffs between two physiological activities with differing optimal temperatures or between optimizing a physiological activity and water balance, as water loss is elevated at higher temperatures. For example, ectotherms will often select a higher body temperature after consuming a meal, but the extent to which body temperature is elevated after eating is affected by its hydric state. Despite this known hydration state-based suppression of thermophily associated with digestion, the impact of this reduced body temperature on digestion performance is unknown. Accordingly, we determined whether small, thermophily-relevant changes in body temperature impact digestive efficiency or passage time and whether sex influenced the extent of the effect. Eighteen (9 female and 9 male) Children's pythons (Antaresia childreni) each consumed a meal at three temperatures (29 °C, 30 °C, and 31 °C), and gut passage time and digestive efficiency were determined. We found that neither metric was affected by temperature over the range tested. However, digestive efficiency was significantly impacted by the interaction between sex and temperature with males having significantly lower digestive efficiency than females at 31 °C, but not 29 °C or 30 °C. Our results provide insight into the effects of temperature on digestive physiology across narrow temperature ranges as well as demonstrate a sex-based difference in digestive physiology.
Collapse
|
5
|
Litmer AR, Beaupre SJ. Cycling temperature treatments affect estimates of digestive performance in prairie lizards (Sceloporus consobrinus). J Exp Biol 2024; 227:jeb247006. [PMID: 38299309 DOI: 10.1242/jeb.247006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
In nature, many organisms experience a daily range of body temperatures. Thermal performance at stable temperatures is often extrapolated to predict function in cyclical environments. However, temperature order and cyclicity may influence physiological processes. The current study compared energy intake, digestive passage time and energy budgets at a stable temperature (33°C) and two temperature cycles in lizards (Sceloporus consobrinus), to determine (1) whether stable treatments adequately project performance in a cycling environment and (2) whether temperature order influences performance. Cycles had a mean temperature of 33°C, and rotated through 30°C, 33°C and 36°C daily, with equal durations of time at each temperature but differing temperature order, with warm days and cool nights in cycle 1 and cool days and warm nights in cycle 2. For analyses, performance in the stable treatment was compared with that during cycles. If temperature is the primary factor regulating performance, then performance from the stable treatment and cycles should compare favorably. However, physiological performance varied based on temperature treatment. Energy intake and budgets were similar between the stable trial and cycle 1 but not cycle 2. However, passage time did not differ. Notably, the two cycling regimes consistently varied in performance, indicating that temperature order plays a primary role in regulating performance. Physiological data collection requires careful consideration of effects of cycling versus stable temperature treatments. Stable temperatures do not consistently represent performance in cycling regimes and consideration should be paid not only to which temperatures animals experience but also to how temperature is experienced in nature.
Collapse
Affiliation(s)
- Allison R Litmer
- University of Arkansas, Department of Biological Sciences, 650 W. Dickson Street, Fayetteville, AR 72701, USA
| | - Steven J Beaupre
- University of Arkansas, Department of Biological Sciences, 650 W. Dickson Street, Fayetteville, AR 72701, USA
| |
Collapse
|
6
|
Mendoza P, Furuta C, Garcia B, Zena LA, Carciofi AC, Bícego KC. Temperature effects on metabolism and energy requirement during the fast growth phase in the red-footed tortoise, Chelonoidis carbonaria. J Comp Physiol B 2023; 193:661-676. [PMID: 37752253 DOI: 10.1007/s00360-023-01514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Early life is a challenging phase because of the high rates of morphophysiological development and growth. Changes in ambient temperature, which directly affect energy metabolism and digestive functions in ectotherms, may be of great impact during this phase. We addressed this issue in red-footed tortoise (Chelonoidis carbonaria) hatchlings kept in captivity. To this end, we investigated the effect of temperature (28 °C and 18 °C) on mass-specific gross energy intake (GEIm), daily body mass gain (MG), daily intake of gross energy (GEI), digestible energy (DEI), resting metabolic rate (RMR), and specific dynamic action (SDA) components during different seasons in the first 13 months after hatching. Greater GEIm and MG were observed in spring (381.7 ± 84.9 J.g-0.86.day-1 and 0.9 ± 0.4 g.day-1) and summer (356.9 ± 58.9 J.g-0.86.day-1 and 1.0 ± 0.4 g.day-1). The highest and lowest RMRs at 28 °C were observed in spring (36.4 ± 5.1 kJ.kg-1.day-1) and winter (22.4 ± 6.2 kJ.kg-1.day-1), respectively. Regardless season, hatchlings showed greater GEI and DEI, O2 consumption, CO2 production, RMR, maximum metabolic rate after feeding (FMRMAX), and heat increment (FMRMAX- RMR) at 28 °C compared to 18 °C. In addition, the significant body mass influence showed allometric exponents of 0.62 at 28 °C and 0.92 at 18 °C for RMR. Our results indicate an important effect of environmental temperature on energy requirements and utilization in C. carbonaria hatchlings, which is seasonally influenced even in this early phase of life.
Collapse
Affiliation(s)
- Pierina Mendoza
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil.
- Wildhunger-Wildlife Nutrition Advisory, Lima, Peru.
| | - Camila Furuta
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Beatriz Garcia
- Department of Biology Sciences, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Lucas A Zena
- Department of Biological and Environmental Sciences, University of Gothenburg, 413 90, Gothenburg, Sweden
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Aulus C Carciofi
- Department of Clinic and Veterinary Surgery, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
7
|
McCue MD. CO 2 scrubbing, zero gases, Keeling plots, and a mathematical approach to ameliorate the deleterious effects of ambient CO 2 during 13 C breath testing in humans and animals. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9639. [PMID: 37817343 DOI: 10.1002/rcm.9639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/17/2023] [Accepted: 08/26/2023] [Indexed: 10/12/2023]
Abstract
13 C breath testing is increasingly used in physiology and ecology research because of what it reveals about the different fuels that animals oxidize to meet their energetic demands. Here I review the practice of 13 C breath testing in humans and other animals and describe the impact that contamination by ambient/background CO2 in the air can have on the accuracy of 13 C breath measurements. I briefly discuss physical methods to avoid sample contamination as well as the Keeling plot approach that researchers have been using for the past two decades to estimate δ13 C from breath samples mixed with ambient CO2 . Unfortunately, Keeling plots are not suited for 13 C breath testing in common situations where (1) a subject's VCO2 is dynamic, (2) ambient [CO2 ] may change, (3) a subject is sensitive to hypercapnia, or (4) in any flow-through indirect calorimetry system. As such, I present a mathematical solution that addresses these issues by using information about the instantaneous [CO2 ] and the δ13 CO2 of ambient air as well as the diluted breath sample to back-calculate the δ13 CO2 in the CO2 exhaled by the animal. I validate this approach by titrating a sample of 13 C-enriched gas into an air stream and demonstrate its ability to provide accurate values across a wide range of breath and air mixtures. This approach allows researchers to instantaneously calculate the δ13 C of exhaled gas of humans or other animals in real time without having to scrub ambient CO2 or rely on estimated values.
Collapse
|
8
|
Dubiner S, Kashi A, Drabkin A, Blinder P, Levin E. Patterns of fatty acid usage in two nocturnal insectivores: the Mediterranean house gecko (Hemidactylus turcicus) and the Etruscan pygmy shrew (Suncus etruscus). J Exp Biol 2023; 226:jeb245963. [PMID: 37675545 PMCID: PMC10656425 DOI: 10.1242/jeb.245963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Dietary fatty acids (FAs) have been demonstrated to be differentially stored or used as a metabolic fuel, depending on carbon chain length or saturation level. However, intestinal absorption also differs among FAs, potentially biasing conclusions on functional differences and their subsequent implications. We tested dietary FA usage in a nocturnal insectivorous reptile and a nocturnal insectivorous mammal of similar size: the gecko Hemidactylus turcicus and the shrew Suncus etruscus. We compared the relative presence of 13C isotopes in breath and feces following ingestion of three isotopically enriched fatty acids: linoleic acid (a polyunsaturated FA), oleic acid (monounsaturated) and palmitic acid (saturated). Both species oxidized linoleic and oleic acids at much higher levels than palmitic acid. Egestion of palmitic acid in feces was much higher than that of linoleic and oleic acids. The major difference between geckos and shrews was that the latter digested fatty acids much faster, which was best explained by the difference in the metabolic rates of the species. Circadian differences were evident for gecko metabolic and FA oxidation rates, peaking at night; for shrews, peak oxidation was achieved faster at night but rates did not differ. Our study is among the first to integrate oxidation and absorption patterns, as well as metabolic rates and their rhythms, providing important insights into the utilization of different dietary FAs in different species.
Collapse
Affiliation(s)
- Shahar Dubiner
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Kashi
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ariel Drabkin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pablo Blinder
- School of Neurobiology, Biochemistry and Biophysics Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School for Neuroscience, Tel Aviv University, 6997801, Israel
| | - Eran Levin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Wehrle BA, German DP. Reptilian digestive efficiency: Past, present, and future. Comp Biochem Physiol A Mol Integr Physiol 2023; 277:111369. [PMID: 36646309 DOI: 10.1016/j.cbpa.2023.111369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Digestion and assimilation of nutrients and energy is central to survival. At its most basic level, investigations of digestion in animals must examine digestive efficiency, or how much of a given meal (i.e., energy) or a specific nutrient an organism can acquire from its food. There are many studies examining this in reptiles, but there is large variation in methodology, and thus, in the conclusions drawn from the gathered data. The majority rely on ratio-based analyses that can jeopardize the reliability of their findings. Therefore, we reviewed the literature to identify common themes in the digestive efficiency data on reptiles. Due to the sheer number of available studies, we largely focused on lizards, but included data on all reptilian groups. As an example of what the current data can reveal, we performed a meta-analysis of digestive efficiency in lizards as a function of temperature using regression analyses. We detected a weak positive trend of soluble carbohydrate digestibility as a function of temperature, but no similar trend in broad-scale digestive efficiency, and propose that these patterns be reevaluated with non-ratio data. We conclude with calls to end conducting analyses on ratios and instead employ covariate methods, for more studies of reptilian digestive efficiency and related processes using consistent methodology, more representation of each population (e.g., many studies focus on males only), and more detailed studies examining the effects of temperature on digestion (since the current data are inconclusive).
Collapse
Affiliation(s)
- Beck A Wehrle
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA; Department of Biology, Bryn Mawr College, 101 N. Merion Ave, Bryn Mawr, PA 19010, USA.
| | - Donovan P German
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA. https://twitter.com/dgermanuci
| |
Collapse
|
10
|
Lo VK, Martin BT, Danner EM, Cocherell DE, Cech, Jr JJ, Fangue NA. The effect of temperature on specific dynamic action of juvenile fall-run Chinook salmon, Oncorhynchus tshawytscha. CONSERVATION PHYSIOLOGY 2022; 10:coac067. [PMID: 36325131 PMCID: PMC9616469 DOI: 10.1093/conphys/coac067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Basin experience temporally and spatially heterogenous temperature regimes, between cool upper tributaries and the warm channelized Delta, during freshwater rearing and outmigration. Limited water resources necessitate human management of dam releases, allowing temperature modifications. The objective of this study was to examine the effect of temperature on specific dynamic action (SDA), or the metabolic cost associated with feeding and digestion, which is thought to represent a substantial portion of fish energy budgets. Measuring SDA with respect to absolute aerobic scope (AAS), estimated by the difference between maximum metabolic rate (MMR) and standard metabolic rate (SMR), provides a snapshot of its respective energy allocation. Fish were acclimated to 16°C, raised or lowered to each acute temperature (13°C, 16°C, 19°C, 22°C or 24°C), then fed a meal of commercial pellets weighing 2% of their wet mass. We detected a significant positive effect of temperature on SMR and MMR, but not on AAS. As expected, there was no significant effect of temperature on the total O2 cost of digestion, but unlike other studies, we did not see a significant difference in duration, peak metabolic rate standardized to SMR, time to peak, percent of meal energy utilized, nor the ratio of peak O2 consumption to SMR. Peak O2 consumption represented 10.4-14.5% of AAS leaving a large amount of aerobic capacity available for other activities, and meal energy utilized for digestion ranged from 5.7% to 7.2%, leaving substantial remaining energy to potentially assimilate for growth. Our juvenile fall-run Chinook salmon exhibited thermal stability in their SDA response, which may play a role in maintaining homeostasis of digestive capability in a highly heterogeneous thermal environment where rapid growth is important for successful competition with conspecifics and for avoiding predation.
Collapse
Affiliation(s)
- Vanessa K Lo
- Corresponding author: Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA 95616, USA.
| | - Benjamin T Martin
- Department of Theoretical and Computational Ecology, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Eric M Danner
- NOAA Southwest Fisheries Science Center, Santa Cruz, 95060 CA, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, 95616 CA, USA
| | - Joseph J Cech, Jr
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, 95616 CA, USA
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, 95616 CA, USA
| |
Collapse
|
11
|
Weldon CW, Terblanche JS, Bosua H, Malod K, Chown SL. Male Mediterranean fruit flies prefer warmer temperatures that improve sexual performance. J Therm Biol 2022; 108:103298. [DOI: 10.1016/j.jtherbio.2022.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
|
12
|
Chang J, Pan Y, Liu W, Xie Y, Hao W, Xu P, Wang Y. Acute temperature adaptation mechanisms in the native reptile species Eremias argus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151773. [PMID: 34808164 DOI: 10.1016/j.scitotenv.2021.151773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Reptiles are sensitive to temperature changes as ectotherm animals. The climate warming may pose more serious threat to reptiles. Although the behavior effect and reproduction biology have been well studied, little information is available about the adaptation mechanisms of reptiles to temperature stress. In this study, the native Chinese species, Eremias argus were incubated at 15 (cold stress), 25 (control group) and 35 °C (thermal stress) for 24 h. The transcriptome and metabolome technology were applied to investigate the molecular regulation mechanisms of lizards to acute temperature changes. The CIRBP and HSPA8 were hub genes in response to temperature adaptation. The increased expression of PER gene in lizard circadian rhythm is associated with tyrosine metabolism after cold or thermal stress. The poly-unsaturated fatty acids in female lizard liver were significantly increased with up-regulation of FASN and ACACA genes after thermal stress, which proved the disruption of fatty acid biosynthesis pathway in corporation with the altered body weight. The cortisol and testosterone were important steroid hormones in response to temperature changes especially in male lizard liver. The increased CIRBP gene expression in lizard gonads suppressed the KDM6B gene, which regulates the testis development and may induce sex reversal in male lizard after thermal stress. The adaptation responses of lizards to temperature stress may threaten the health status of wild population.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China.
| | - Yifan Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Wentao Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Yun Xie
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| |
Collapse
|
13
|
Schwarz R, Dror L, Stark G, Gefen E, Kronfeld-Schor N, Chapple DG, Meiri S. Conserved ecophysiology despite disparate microclimatic conditions in a gecko. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:316-328. [PMID: 34951507 DOI: 10.1002/jez.2568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Microscale differences in the habitats organisms occupy can influence selection regimes and promote intraspecific variation of traits. Temperature-dependent traits can be locally adapted to climatic conditions or be highly conserved and insensitive to directional selection under all but the most extreme regimes, and thus be similar across populations. The opposing slopes of Nahal Oren canyon in the Carmel Mountains, Israel, are strikingly different: the south-facing slope receives intensive solar radiation, is hot and supports mostly annual vegetation, whereas the north-facing slope is ~10°C cooler, more humid, and supports Mediterranean woodland. We examined whether these differences manifest in the thermal physiology of a common gecko species Ptyodactylus guttatus in controlled laboratory conditions. We predicted that geckos from the hotter south-facing slope would prefer higher temperatures, have faster gut passage times, lower metabolic and evaporative water loss rates, and start diel activity earlier compared with north-facing slope conspecifics. Contrary to these predictions, there were no differences between any of the ecophysiological traits in geckos from the opposing slopes. Nevertheless, our data showed that individuals from the north-facing slope were generally more active in earlier hours of the afternoon compared with south-facing individuals. We suggest that P. guttatus individuals disperse between the slopes and either gene-flow or behavioral plasticity deter local adaptation, resulting in similar physiological traits. Perhaps a stronger contrast in climatic conditions and a stronger barrier are needed to result in interpopulation divergence in temperature-dependent traits.
Collapse
Affiliation(s)
- Rachel Schwarz
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Liat Dror
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Gavin Stark
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Eran Gefen
- Department of Biology, University of Haifa-Oranim, Kiryat Tivon, Israel
| | | | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Shai Meiri
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Aguado S, Clusella-Trullas S. Intra-specific variation of thermal performance, skin reflectance and body size partially co-vary with climate in a lizard. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Thermal adaptation theory posits that variation of thermal traits such as those affecting thermal budgets and the performance of ectotherms should be associated with climate gradients. Under a simple scenario, thermal traits should also co-vary to shape optimal thermal phenotypes under a particular climate. However, geographical variation and covariation of thermal traits can result from other sources of selection and a wide range of other mechanisms. Here, we explore variation and covariation of skin reflectance (melanization), body size and thermal performance traits among three populations of the lizard Cordylus cordylus, a species endemic to South Africa. We also examine relationships between skin reflectance and substrate reflectance, body size and crevice size to test alternative hypotheses. We found partial support for predictions of thermal adaptation to climate regimes for body size, melanization and chill-coma recovery time. Darker lizards also performed optimally at higher temperatures than lighter coloured lizards but there was limited individual covariation between morphological and performance traits. Despite partial support for thermal adaptation, the complex interactions between sex and body size and between substrate reflectance and size underlying skin reflectance emphasized the importance of testing multiple hypotheses when exploring drivers of thermal trait variation within species.
Collapse
Affiliation(s)
- Sara Aguado
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, and Unidad Mixta de Investigación en Biodiversidad (UMIB, CSIC-UO-PA), Oviedo, Spain
| | | |
Collapse
|
15
|
Decrease in preferred temperature in response to an immune challenge in lizards from cold environments in Patagonia, Argentina. J Therm Biol 2020; 93:102706. [PMID: 33077127 DOI: 10.1016/j.jtherbio.2020.102706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
In ectotherms, the likelihood of surviving an infection is determined by the efficiency of thermoregulation, the availability of a variety of thermal microenvironments, the individual's health status, and the virulence of the infective agent. Physiological and behavioral demands related to an efficient immune response entail a series of costs that compete with other vital activities, specifically energy storage, growth, reproduction, and maintenance functions. Here, we characterize the thermal biology and health status by the presence of injuries, ectoparasites, body condition, and individual immune response capacity (using phytohemagglutinin in a skin-swelling assay) of the southernmost lizards of the world, Liolaemus sarmientoi, endemic to a sub-optimal, cold environment in Patagonia, Argentina. In particular, we study the effect of a bacterial endotoxin (lipopolysaccharide; LPS-treatment) on thermoregulation. We found that the field-active body temperature (Tb) was much lower than the preferred body temperature (Tp) obtained in the laboratory. All the individuals were in good body condition at the beginning of the experiments. The phytohemagglutinin test caused detectable thickening in sole-pads at 2 h and 24 h post-assay in males and non-pregnant females, indicating a significant innate immune response. In the experimental immune challenge, the individuals tended to prefer a low body temperature after LPS-treatment (2 h post-injection) and developed hypothermia, while the control individuals injected with phosphate buffered saline (PBS), maintained their body temperature throughout the trial. In both the LPS-treatment and PBS-control individuals, BC declined during the experiment. Hypothermia may allow this southernmost species to optimize the use of their energetic resources and reduce the costs of thermoregulation in a cold-temperate environment where they rarely attain the mean Tp (35.16 °C) obtained in laboratory.
Collapse
|
16
|
Sanabria EA, Vergara SC, Rodríguez CY, Quiroga LB. Thermophilic response post feeding in Pleurodema nebulosum (Anura: Leptodactylidae) from Monte desert, Argentina. J Therm Biol 2020; 90:102605. [PMID: 32479399 DOI: 10.1016/j.jtherbio.2020.102605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
We studied the thermophilic response to feeding of a typical desert adapted anuran from the Monte Desert. Our aim was to evaluate thermal changes in the selected body temperature of adult frogs of Pleurodema nebulosum, and measure the intestinal passage time, and food digestion. Our results show that after feeding, they selected higher micro-environmental temperatures ~ + 2 °C than frogs that remained starved. Pleurodema nebulosum would present a postprandial thermophilic response. The time of retention of food in the digestive tract was thermo-dependent, being lower in those individuals who were incubated at high temperatures (25 °C) compared to those subjected to lower temperatures (20 °C). Although we did not detect effects of temperature on digestive efficiency, the mass of faecal material indicates an increase at temperatures closer to the selected ones, suggesting that the defecation rate is influenced by temperature. Laiuoperinae frogs are characterized by explosive breeding behavior and fast growing rate. The digestive efficiency is essential for acquiring energy necessary for growth, reproduction and refuge-seeking, among others. In this framework, the differential selection of temperatures between moments of fasting and feeding allows the frogs to maintain a high digestive efficiency, maximizing the absorption of nutrients.
Collapse
Affiliation(s)
- Eduardo A Sanabria
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan, Av. Ignacio de la Roza 230 (Oeste), 5400, San Juan, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Silvia C Vergara
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - César Y Rodríguez
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan, Av. Ignacio de la Roza 230 (Oeste), 5400, San Juan, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Lorena B Quiroga
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan, Av. Ignacio de la Roza 230 (Oeste), 5400, San Juan, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
17
|
Plasman M, Bautista A, McCUE MD, DÍaz DE LA Vega-PÉrez AH. Resting metabolic rates increase with elevation in a mountain-dwelling lizard. Integr Zool 2020; 15:363-374. [PMID: 32306560 DOI: 10.1111/1749-4877.12434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Individuals that inhabit broad elevational ranges may experience unique environmental challenges. Because temperature decreases with increased elevation, the ectotherms living at high elevations have to manage limited activity time and high thermoregulatory effort. The resting metabolic rate (RMR) of a postabsorptive animal is related to its total energy requirements as well as many other fitness traits. Mesquite lizards (Sceloporus grammicus) living on La Malinche Volcano, Mexico, inhabit a wide elevational range with some populations apparently thriving above the tree line. We measured the RMR of lizards from different elevations (i.e., 2,600, 3,200, and 4,100 m) at four ecologically relevant temperatures (i.e., 15, 25, 30, and 35 °C) and found that RMR of mesquite lizards increased with temperature and body mass. More importantly, lizards from the high-elevation population had mass specific RMR that was higher at all temperatures. While the higher RMRs of high-elevation populations imply higher metabolic costs at a given temperature these lizards were also smaller. Both of these traits may allow these high elevation populations to thrive in the face of the thermal challenges imposed by their environment.
Collapse
Affiliation(s)
- Melissa Plasman
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Amando Bautista
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | | | - Aníbal H DÍaz DE LA Vega-PÉrez
- Consejo Nacional de Ciencia y Tecnología-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
18
|
González-Medina E, Cabello-Vergel J, Playà-Montmany N, Villegas A, Parejo M, Abad-Gómez JM, Sánchez-Guzmán JM, Masero JA. Going to sleep with a full belly: Thermal substitution by specific dynamic action in shorebirds. Comp Biochem Physiol A Mol Integr Physiol 2020; 244:110689. [PMID: 32197969 DOI: 10.1016/j.cbpa.2020.110689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
Many bird species occupy habitats where environmental temperatures fall well below their thermoneutral zone (TNZ), so they must deal with high energy costs of thermoregulation to keep in heat balance. In such circumstances, specific dynamic action (SDA) - also referred to as heat increment of feeding - could be used to substitute for these high thermoregulatory costs. If birds ingest food before going to roost in cold environments, the SDA will be beneficial as an energy-conserving mechanism by thermal substitution. We investigated the magnitude and duration of SDA in a small-sized shorebird, the dunlin Calidris alpina, while feeding on living prey. We simulated in the aviary the food availability of a semidiurnal tidal cycle, and calculated the thermal substitution by SDA below their TNZ at the beginning of the "high tide" (resting period), after feeding ad libitum during the "low tide" (feeding period). Within TNZ (25 °C), dunlins consumed 12% (2.15 kJ) of the gross energy intake in excess by the SDA, with a duration of ~95 min. At 10 °C, i.e. below the lower critical limit of TNZ, SDA magnitude and duration were reduced by 29% and 31%, respectively. The amount of food ingested significantly affected the duration and magnitude of SDA, as well as the dunlin's body temperature. Thermal substitution by SDA saved 11% of the dunlin's theoretical daily energy requirement during winter. This thermal substitution could be commonly used by birds going to roost in cold climates. Interacting with other different behavioral and/or physiological strategies would help to maintain lower energetic costs and enhance survival in cold environments.
Collapse
Affiliation(s)
- Erick González-Medina
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain; Posgrado de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico.
| | - Julián Cabello-Vergel
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| | - Núria Playà-Montmany
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| | - Auxiliadora Villegas
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| | - Manuel Parejo
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| | - José M Abad-Gómez
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| | - Juan M Sánchez-Guzmán
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| | - José A Masero
- Conservation Biology Research Group, Área de Zoología, Universidad de Extremadura, Badajoz 06006, Spain
| |
Collapse
|
19
|
Hatle JD, Karjasevic A, Rehfeldt E, Nagle FS, Milano LJ, Patel S, Hiatt D, McCue MD. Life-extending dietary restriction, but not dietary supplementation of branched-chain amino acids, can increase organismal oxidation rates of individual branched-chain amino acids by grasshoppers. ACTA ACUST UNITED AC 2019; 5:209-223. [PMID: 31984246 PMCID: PMC6971830 DOI: 10.3233/nha-190073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND: Life-extending dietary restriction increases energy demands. Branched-chain amino acids (BCAAs), at high levels, may be detrimental to healthspan by activating the mechanistic Target of Rapamycin (mTOR). Whether organismal oxidation of BCAAs increases upon dietary restriction is unknown. OBJECTIVE: Test whether dietary restriction (DR, which creates an energy deficit) or supplemental dietary BCAAs (superfluous BCAAs) increases oxidation of BCAAs, potentially reducing their levels to improve healthspan. METHODS: Grasshoppers were reared to middle-age on one of four diets, each a level of lettuce feeding and a force-fed solution: 1) ad libitum lettuce & buffer, 2) ad libitum lettuce & supplemental BCAAs, 3) DR lettuce & buffer, and 4) DR lettuce & supplemental BCAAs. On trial days, grasshoppers were force-fed one 13C-1-BCAA (isoleucine, leucine, or valine). Breath was collected and tested for 13CO2, which represents organismal oxidation of the amino acid. Additional trials re-tested oxidation of leucine (the most potent activator of mTOR) in both females and males on dietary restriction. RESULTS: Dietary restriction generally increased cumulative oxidation of each BCAA in females and hungry males over ∼8 hr. Results were consistent for isoleucine and valine, but less so for leucine. Supplementation of BCAAs, in combination with dietary restriction, increased isoleucine in hemolymph, with similar trends for leucine and valine. Despite this, supplementation of BCAAs did not alter oxidation of any BCAAs. CONCLUSIONS: Dietary restriction can increase oxidation of BCAAs, likely due to an energy deficit. The increased oxidation may decrease available BCAAs for activation of mTOR and improve healthspan.
Collapse
Affiliation(s)
- J D Hatle
- Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - A Karjasevic
- Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - E Rehfeldt
- Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - F S Nagle
- Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - L J Milano
- Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - S Patel
- Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - D Hiatt
- Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - M D McCue
- Sable Systems International, North Las Vegas, NV, USA
| |
Collapse
|
20
|
McCue MD, Javal M, Clusella‐Trullas S, Le Roux JJ, Jackson MC, Ellis AG, Richardson DM, Valentine AJ, Terblanche JS. Using stable isotope analysis to answer fundamental questions in invasion ecology: Progress and prospects. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Marshall D. McCue
- Sable Systems International Las Vegas NV USA
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| | - Marion Javal
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| | - Susana Clusella‐Trullas
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - Johannes J. Le Roux
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
- Department of Biological Sciences Macquarie University NSW Australia
| | - Michelle C. Jackson
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
- Department of Life Sciences Imperial College London Ascot UK
- Department of Zoology Oxford University Oxford UK
| | - Allan G. Ellis
- Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - David M. Richardson
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - Alex J. Valentine
- Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| |
Collapse
|
21
|
Pettit TV, Pettit RJ, Durso AM, French SS. Investment of both essential fatty and amino acids to immunity varies depending on reproductive stage. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:552-561. [PMID: 31625280 DOI: 10.1002/jez.2324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/10/2019] [Accepted: 09/08/2019] [Indexed: 12/29/2022]
Abstract
Trade-offs among the key life-history traits of reproduction and immunity have been widely documented. However, the currency in use is not well-understood. We investigated how reproducing female side-blotched lizards, Uta stansburiana, allocate lipids versus proteins when given an immune challenge. We tested whether lizards would invest more in reproduction or immunity depending on reproductive stage. Females were given stable isotopes (15 N-leucine and 13 C-1-palmitic acid), maintained on a regular diet and given either a cutaneous biopsy or a sham biopsy (control). Stable isotopes were monitored and analyzed in feces and uric acid, skin biopsies, eggs, and toe clips. We found that lizards deposited both proteins and lipids into their healing wounds (immune-challenged), skin (control), and eggs (all) and that catabolism of proteins exceeded incorporation into tissue during wound-healing. Specifically, we found that healed biopsies of wounded animals had more leucine and palmitic acid than the nonregrown skin biopsies taken from unwounded control animals. Earlier in reproduction, lizards invested relatively more labeled proteins into healing their wound tissue, but not into unwounded skin of control animals. Thus, reproduction is sometimes favored over self-maintenance, but only in later reproductive stages. Finally, we documented positive relationships among the amount of palmitic acid deposited in the eggs, the amount of food eaten, and the amount of palmitic acid excreted, suggesting higher turnover rates of lipids in lizards investing highly in their eggs.
Collapse
Affiliation(s)
- Taylor V Pettit
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah
| | - R John Pettit
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah
| | - Andrew M Durso
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah
| | - Susannah S French
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah
| |
Collapse
|