1
|
Orchard I, Lange AB. The neuroendocrine and endocrine systems in insect - Historical perspective and overview. Mol Cell Endocrinol 2024; 580:112108. [PMID: 37956790 DOI: 10.1016/j.mce.2023.112108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
A complex cascade of events leads to the initiation and maintenance of a behavioral act in response to both internally and externally derived stimuli. These events are part of a transition of the animal into a new behavioral state, coordinated by chemicals that bias tissues and organs towards a new functional state of the animal. This form of integration is defined by the neuroendocrine (or neurosecretory) system and the endocrine system that release neurohormones or hormones, respectively. Here we describe the classical neuroendocrine and endocrine systems in insects to provide an historic perspective and overview of how neurohormones and hormones support plasticity in behavioral expression. Additionally, we describe peripheral tissues such as the midgut, epitracheal glands, and ovaries, which, whilst not necessarily being endocrine glands in the pure sense of the term, do produce and release hormones, thereby providing even more flexibility for inter-organ communication and regulation.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON, L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
2
|
Keyes-Scott NI, Swade KR, Allen LR, Vogel KJ. RNAi-mediated knockdown of two orphan G protein-coupled receptors reduces fecundity in the yellow fever mosquito Aedes aegypti. FRONTIERS IN INSECT SCIENCE 2023; 3:1197945. [PMID: 38469499 PMCID: PMC10926455 DOI: 10.3389/finsc.2023.1197945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 03/13/2024]
Abstract
G protein-coupled receptors (GPCRs) control numerous physiological processes in insects, including reproduction. While many GPCRs have known ligands, orphan GPCRs do not have identified ligands in which they bind. Advances in genomic sequencing and phylogenetics provide the ability to compare orphan receptor protein sequences to sequences of characterized GPCRs, and thus gain a better understanding of the potential functions of orphan GPCRs. Our study sought to investigate the functions of two orphan GPCRs, AAEL003647 and AAEL019988, in the yellow fever mosquito, Aedes aegypti. From our phylogenetic investigation, we found that AAEL003647 is orthologous to the SIFamide-2/SMYamide receptor. We also found that AAEL019988 is orthologous to the Trapped in endoderm (Tre1) receptor of Drosophila melanogaster. Next, we conducted a tissue-specific expression analysis and found that both receptors had highest expression in the ovaries, suggesting they may be important for reproduction. We then used RNA interference (RNAi) to knock down both genes and found a significant reduction in the number of eggs laid per individual female mosquito, suggesting both receptors are important for Ae. aegypti reproduction.
Collapse
Affiliation(s)
| | | | | | - Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Yamagata N, Imanishi Y, Wu H, Kondo S, Sano H, Tanimoto H. Nutrient responding peptide hormone CCHamide-2 consolidates appetitive memory. Front Behav Neurosci 2022; 16:986064. [PMID: 36338876 PMCID: PMC9627028 DOI: 10.3389/fnbeh.2022.986064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
CCHamide-2 (CCHa2) is a protostome excitatory peptide ortholog known for various arthropod species. In fruit flies, CCHa2 plays a crucial role in the endocrine system, allowing peripheral tissue to communicate with the central nervous system to ensure proper development and the maintenance of energy homeostasis. Since the formation of odor-sugar associative long-term memory (LTM) depends on the nutrient status in an animal, CCHa2 may play an essential role in linking memory and metabolic systems. Here we show that CCHa2 signals are important for consolidating appetitive memory by acting on the rewarding dopamine neurons. Genetic disruption of CCHa2 using mutant strains abolished appetitive LTM but not short-term memory (STM). A post-learning thermal suppression of CCHa2 expressing cells impaired LTM. In contrast, a post-learning thermal activation of CCHa2 cells stabilized STM induced by non-nutritious sugar into LTM. The receptor of CCHa2, CCHa2-R, was expressed in a subset of dopamine neurons that mediate reward for LTM. In accordance, the receptor expression in these dopamine neurons was required for LTM specifically. We thus concluded that CCHa2 conveys a sugar nutrient signal to the dopamine neurons for memory consolidation. Our finding establishes a direct interplay between brain reward and the putative endocrine system for long-term energy homeostasis.
Collapse
Affiliation(s)
- Nobuhiro Yamagata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- *Correspondence: Nobuhiro Yamagata,
| | | | - Hongyang Wu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hiroko Sano
- Department of Molecular Genetics, Institute of Life Sciences, Kurume University, Kurume, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
CCHamide-2 Signaling Regulates Food Intake and Metabolism in Gryllus bimaculatus. INSECTS 2022; 13:insects13040324. [PMID: 35447766 PMCID: PMC9026500 DOI: 10.3390/insects13040324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
Abstract
Neuropeptides play vital roles in energy homeostasis in insects and other animals. Although the importance of the regulatory network of neuropeptides in feeding and metabolism has been illuminated, a complete understanding of the mechanisms has not been addressed as many factors are involved in the regulation. CCHamide-2 is a newly identified brain-gut neuropeptide that regulates feeding behavior in several insect species including Drosophila melanogaster. However, little is known about the mechanisms controlling the feeding-related behavior and metabolic functions modulated by CCHamide-2 in other insects. In this study, we addressed the functions of CCHamide-2 in the two-spotted cricket, Gryllus bimaculatus, which was used as the experimental material to research the mechanisms of feeding and metabolism in this omnivorous insect species. Knockdown crickets by RNA interference against GbCCHamide-2R increased the amount of food intake, while injection of chemically synthetic GbCCHamide-2 peptide reduced the amount of food intake. Further, knockdown and peptide injection experiments revealed that GbCCHamide-2 signaling increased the concentrations of circulating lipids and carbohydrates, and the carbohydrate-rich diet increased the transcript levels of GbCCHa-2R. Moreover, GbCCHa-2 injection decreased the transcript level of Gbilp. By contrast, GbCCHamide-2 signaling did not affect nymphal growth or the transcript level of GbAKH, as well as feeding preferences. Taken together, CCHamide-2 signaling in G. bimaculatus regulates food intake associated with alterations in lipid and carbohydrate levels in hemolymph.
Collapse
|
5
|
Orchard I, Leyria J, Al-Dailami A, Lange AB. Fluid Secretion by Malpighian Tubules of Rhodnius prolixus: Neuroendocrine Control With New Insights From a Transcriptome Analysis. Front Endocrinol (Lausanne) 2021; 12:722487. [PMID: 34512553 PMCID: PMC8426621 DOI: 10.3389/fendo.2021.722487] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023] Open
Abstract
Rhodnius prolixus (the kissing bug and a major vector of Chagas disease) is an obligate blood feeder that in the case of the fifth instar consumes up to 10 times its unfed body weight in a single 20-minute feed. A post-prandial diuresis is initiated, within minutes of the start of gorging, in order to lower the mass and concentrate the nutrients of the meal. Thus, R. prolixus rapidly excretes a fluid that is high in NaCl content and hypo-osmotic to the hemolymph, thereby eliminating 50% of the volume of the blood meal within 3 hours of gorging. In R. prolixus, as with other insects, the Malpighian tubules play a critical role in diuresis. Malpighian tubules are not innervated, and their fine control comes under the influence of the neuroendocrine system that releases amines and neuropeptides as diuretic or antidiuretic hormones. These hormones act upon the Malpighian tubules via a variety of G protein-coupled receptors linked to second messenger systems that influence ion transporters and aquaporins; thereby regulating fluid secretion. Much has been discovered about the control of diuresis in R. prolixus, and other model insects, using classical endocrinological studies. The post-genomic era, however, has brought new insights, identifying novel diuretic and antidiuretic hormone-signaling pathways whilst also validating many of the classical discoveries. This paper will focus on recent discoveries into the neuroendocrine control of the rapid post-prandial diuresis in R. prolixus, in order to emphasize new insights from a transcriptome analysis of Malpighian tubules taken from unfed and fed bugs.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | | | |
Collapse
|
6
|
Capriotti N, Gioino P, Ons S, Ianowski JP. The neuropeptide RhoprCCHamide2 inhibits serotonin-stimulated transcellular Na+ transport across the anterior midgut of the vector of Chagas disease, Rhodnius prolixus. J Exp Biol 2021; 224:264938. [PMID: 34008838 DOI: 10.1242/jeb.242272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Rhodnius prolixus is a blood-feeding insect vector of Trypanosoma cruzi, a protozoan parasite that causes Chagas disease. During each blood meal, the animals ingest large volumes of blood, that may be up to 12 times the unfed body mass. These blood meals impose a significant osmotic stress for the animals due to the hyposmotic condition of the ingested blood compared with the insect's hemolymph. Thus the insect undergoes a massive postprandial diuresis that allows for the excretion of the plasma fraction of the blood in less than two hours. Diuresis is performed by the excretory system, consisting of the Malpighian tubules and gut, under the control of diuretic and anti-diuretic factors. We investigated the ion transport machinery triggered by stimulation with the diuretic factor serotonin in the anterior midgut (i.e. crop) and the effect of the diuretic modulator RhoprCCHamide2. Ussing chamber assays revealed that serotonin-stimulated increase in transepithelial short-circuit current (Isc) was more sensitive to the blockage with amiloride than 5-N-ethyl-N-isopropyl amiloride (EIPA), suggesting the involvement of Na+ channels. Incubation in Na+-free, but not Cl--free saline, blocked the effect of serotonin on Isc. Moreover, treatment with Na+-K+-2Cl- cotransporter (NKCC) and Na+-Cl- cotransporter (NCC) blockers had no effect on fluid secretion but was blocked by amiloride. Blockage of Na+/K+-ATPase with ouabain inhibited Isc but the H+-ATPase inhibitor bafilomycin had no effect. The neuropeptide RhoprCCHamide2 diminished serotonin-stimulated Isc across the crop. The results suggest that Na+ undergoes active transport via an apical amiloride-sensitive Na+ channel and a basolateral ouabain-sensitive Na+/K+-ATPase, while Cl- is transported through a passive paracellular pathway.
Collapse
Affiliation(s)
- Natalia Capriotti
- Laboratorio de Neurobiología de Insectos, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 numero 1459, codigo postal 1900, La Plata, Buenos Aires, Argentina
| | - Paula Gioino
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 numero 1459, codigo postal 1900, La Plata, Buenos Aires, Argentina
| | - Juan P Ianowski
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| |
Collapse
|
7
|
Li J, Shi Y, Lin G, Yang C, Liu T. Genome-wide identification of neuropeptides and their receptor genes in Bemisia tabaci and their transcript accumulation change in response to temperature stresses. INSECT SCIENCE 2021; 28:35-46. [PMID: 31912953 PMCID: PMC7818427 DOI: 10.1111/1744-7917.12751] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 05/10/2023]
Abstract
Insect neuropeptides play an important role in regulating physiological functions such as growth, development, behavior and reproduction. We identified temperature-sensitive neuropeptides and receptor genes of the cotton whitefly, Bemisia tabaci. We identified 38 neuropeptide precursor genes and 35 neuropeptide receptors and constructed a phylogenetic tree using additional data from other insects. As temperature adaptability enables B. tabaci to colonize a diversity of habitats, we performed quantitative polymerase chain reaction with two temperature stresses (low = 4 °C and high = 40 °C) to screen for temperature-sensitive neuropeptides. We found many neuropeptides and receptors that may be involved in the temperature adaptability of B. tabaci. This study is the first to identify B. tabaci neuropeptides and their receptors, and it will help to reveal the roles of neuropeptides in temperature adaptation of B. tabaci.
Collapse
Affiliation(s)
- Jiang‐Jie Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and MedicineQingdao Agricultural UniversityQingdaoShandongChina
| | - Yan Shi
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and MedicineQingdao Agricultural UniversityQingdaoShandongChina
| | - Gan‐Lin Lin
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and MedicineQingdao Agricultural UniversityQingdaoShandongChina
| | - Chun‐Hong Yang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and MedicineQingdao Agricultural UniversityQingdaoShandongChina
| | - Tong‐Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and MedicineQingdao Agricultural UniversityQingdaoShandongChina
| |
Collapse
|
8
|
Corzo FL, Traverso L, Sterkel M, Benavente A, Ajmat MT, Ons S. Plodia interpunctella (Lepidoptera: Pyralidae): Intoxication with essential oils isolated from Lippia turbinata (Griseb.) and analysis of neuropeptides and neuropeptide receptors, putative targets for pest control. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21684. [PMID: 32329117 DOI: 10.1002/arch.21684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The Indian meal moth Plodia interpunctella is a pest of stored products worldwide. Plant-derived essential oils with insecticidal activity could be safe products to control this species. The scarce information about the mode of action of most plant-derived products limits their use for the control of insect pests. Here, we demonstrate that an essential oil distilled from Lippia turbinata ("poleo") has insecticidal activity on P. interpunctella larvae. Furthermore, we performed a comprehensive characterization of P. interpunctella neuroendocrine system, in comparison with other lepidopteran species.
Collapse
Affiliation(s)
- Fernando Livio Corzo
- Instituto de Ambiente de Montaña y Regiones Áridas Universidad Nacional de Chilecito (IAMRA-UNdeC), La Rioja, Argentina
| | - Lucila Traverso
- Laboratorio de Neurobiología de Insectos, Facultad de Ciencias Exactas, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcos Sterkel
- Laboratorio de Neurobiología de Insectos, Facultad de Ciencias Exactas, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alba Benavente
- Instituto de Ambiente de Montaña y Regiones Áridas Universidad Nacional de Chilecito (IAMRA-UNdeC), La Rioja, Argentina
| | - María Teresa Ajmat
- Instituto de Ambiente de Montaña y Regiones Áridas Universidad Nacional de Chilecito (IAMRA-UNdeC), La Rioja, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos, Facultad de Ciencias Exactas, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
9
|
Lubawy J, Urbański A, Colinet H, Pflüger HJ, Marciniak P. Role of the Insect Neuroendocrine System in the Response to Cold Stress. Front Physiol 2020; 11:376. [PMID: 32390871 PMCID: PMC7190868 DOI: 10.3389/fphys.2020.00376] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Insects are the largest group of animals. They are capable of surviving in virtually all environments from arid deserts to the freezing permafrost of polar regions. This success is due to their great capacity to tolerate a range of environmental stresses, such as low temperature. Cold/freezing stress affects many physiological processes in insects, causing changes in main metabolic pathways, cellular dehydration, loss of neuromuscular function, and imbalance in water and ion homeostasis. The neuroendocrine system and its related signaling mediators, such as neuropeptides and biogenic amines, play central roles in the regulation of the various physiological and behavioral processes of insects and hence can also potentially impact thermal tolerance. In response to cold stress, various chemical signals are released either via direct intercellular contact or systemically. These are signals which regulate osmoregulation - capability peptides (CAPA), inotocin (ITC)-like peptides, ion transport peptide (ITP), diuretic hormones and calcitonin (CAL), substances related to the general response to various stress factors - tachykinin-related peptides (TRPs) or peptides responsible for the mobilization of body reserves. All these processes are potentially important in cold tolerance mechanisms. This review summarizes the current knowledge on the involvement of the neuroendocrine system in the cold stress response and the possible contributions of various signaling molecules in this process.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
- HiProMine S.A., Robakowo, Poland
| | - Hervé Colinet
- ECOBIO – UMR 6553, Université de Rennes 1, CNRS, Rennes, France
| | | | - Paweł Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
| |
Collapse
|