1
|
Sohn S, Reid S, Bowen M, Corbex E, Le Gall L, Sidlauskaite E, Hourde C, Morel B, Mariot V, Dumonceaux J. Molecular, Histological, and Functional Changes in Acta1-MCM;FLExDUX4/+ Mice. Int J Mol Sci 2024; 25:11377. [PMID: 39518930 PMCID: PMC11545788 DOI: 10.3390/ijms252111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
DUX4 is the major gene responsible for facioscapulohumeral dystrophy (FSHD). Several mouse models expressing DUX4 have been developed, the most commonly used by academic laboratories being ACTA1-MCM/FLExDUX4. In this study, molecular and histological modifications in the tibialis anterior and quadriceps muscles were investigated in this model at different time points. We investigated several changes that could be used as markers of therapeutic efficacy. Our results confirm the progressive muscular dystrophy previously described but also highlight biases associated with tamoxifen injections and the complexity of choosing the genes used to calculate a DUX4-pathway gene composite score. We also developed a comprehensive force test that better reflects the movements made in everyday life. This functional force-velocity-endurance model, which describes the force production capacities at all velocity and fatigue levels, was applied on 12-13-week-old animals without tamoxifen. Our data highlight that previously unsuspected muscle properties are also affected by the expression of DUX4, leading to a weaker muscle with a lower initial muscle force but with preserved power and endurance capacity. Importantly, this force-velocity-endurance approach can be used in humans for clinical evaluations.
Collapse
Affiliation(s)
- Solene Sohn
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| | - Sophie Reid
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| | - Maximilien Bowen
- Laboratoire Interuniversitaire de Biologie de la Motricité LIBM, EA 7424, Savoie Mont Blanc University, F-7300 Chambéry, France
| | - Emilio Corbex
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| | - Laura Le Gall
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| | - Eva Sidlauskaite
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| | - Christophe Hourde
- Laboratoire Interuniversitaire de Biologie de la Motricité LIBM, EA 7424, Savoie Mont Blanc University, F-7300 Chambéry, France
| | - Baptiste Morel
- Laboratoire Interuniversitaire de Biologie de la Motricité LIBM, EA 7424, Savoie Mont Blanc University, F-7300 Chambéry, France
| | - Virginie Mariot
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (S.S.); (S.R.)
| |
Collapse
|
2
|
Herskind J, Kristensen AM, Ørtenblad N, de Paoli F, Vissing K, Overgaard K. Prolonged loss of force and power following fatiguing contractions in rat soleus muscles. Is low-frequency fatigue an issue during dynamic contractions? Am J Physiol Cell Physiol 2022; 323:C1642-C1651. [DOI: 10.1152/ajpcell.00241.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Low-frequency fatigue (LFF) is defined by a relatively larger deficit in isometric force elicited by low-frequency electrical stimulation compared with high-frequency stimulation. However, the effects of LFF on power during dynamic contractions elicited at low and high frequencies have not been thoroughly characterized. In the current study, rat soleus muscles underwent fatiguing either concentric, eccentric, or isometric contractions. Before and 1 h after the fatiguing contractions, a series of brief isometric and dynamic contractions elicited at 20 and 80 Hz stimulation to establish force-velocity relationships. Maximal force (Fmax), velocity (Vmax), and power (Pmax) were assessed for each frequency. Sarcoplasmic reticulum (SR) Ca2+ release and reuptake rates were assessed pre- and postfatigue. Prolonged fatigue was observed as a loss of Fmax and Pmax in muscles fatigued by concentric or eccentric, but not by isometric contractions. When quantified as a decrease in the ratio between 20 Hz and 80 Hz contractile output, LFF was more pronounced for isometric force than for power (−21% vs. −16% for concentrically fatigued muscles, P = 0.003; 29 vs. 13% for eccentrically fatigued muscles, P < 0.001). No changes in SR Ca2+ release or reuptake rates were observed. We conclude that LFF is less pronounced when expressed in terms of power deficits than when expressed in terms of force deficits, and that LFF, therefore, likely affects performance to a lesser degree during fast concentric contractions than during static or slow contractions.
Collapse
Affiliation(s)
- Jon Herskind
- Department of Public Health, Exercise Biology, Aarhus University, Aarhus, Denmark
| | | | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Frank de Paoli
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kristian Vissing
- Department of Public Health, Exercise Biology, Aarhus University, Aarhus, Denmark
| | - Kristian Overgaard
- Department of Public Health, Exercise Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Seow KN, Seow CY. Molecular Events of the Crossbridge Cycle Reflected in the Force–Velocity Relationship of Activated Muscle. Front Physiol 2022; 13:846284. [PMID: 35360243 PMCID: PMC8960716 DOI: 10.3389/fphys.2022.846284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Muscles convert chemical energy to mechanical work. Mechanical performance of a muscle is often assessed by the muscle’s ability to shorten and generate power over a range of loads or forces, characterized by the force–velocity and force–power relationships. The hyperbolic force–velocity relationship of muscle, for a long time, has been regarded as a pure empirical description of the force–velocity data. Connections between mechanical manifestation in terms of force–velocity properties and the kinetics of the crossbridge cycle have only been established recently. In this review, we describe how the model of Huxley’s crossbridge kinetics can be transformed to the hyperbolic Hill equation, and link the changes in force–velocity properties to molecular events within the crossbridge cycle driven by ATP hydrolysis. This allows us to reinterpret some findings from previous studies on experimental interventions that altered the force–velocity relationship and gain further insight into the molecular mechanisms of muscle contraction under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Kathryn N. Seow
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y. Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, Providence Health Care/St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Chun Y. Seow,
| |
Collapse
|
4
|
Akagi R, Hinks A, Power GA. Differential changes in muscle architecture and neuromuscular fatigability induced by isometric resistance training at short and long muscle-tendon unit lengths. J Appl Physiol (1985) 2020; 129:173-184. [PMID: 32552430 DOI: 10.1152/japplphysiol.00280.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We evaluated the effects of differential muscle architectural adaptations on neuromuscular fatigue resistance. Seven young males and six females participated in this study. Using a longitudinal within-subject design, legs were randomly assigned to perform isometric training of the tibialis anterior (TA) three times per week for 8 wk at a short (S-group) or long muscle-tendon unit length (L-group). Before and following training, fascicle length (FL) and pennation angle (PA) of the TA were assessed. As well, fatigue-related time course changes in isometric maximal voluntary contraction (MVC) torque and isotonic peak power (20% MVC resistance) were determined before, immediately after, and 1, 2, 5, and 10 min following task failure. The fatiguing task consisted of repeated maximal effort isotonic (20% MVC resistance) contractions over a 40° range of motion until the participant reached a 40% reduction in peak power. Although there was no clear improvement in neuromuscular fatigue resistance following training in either group (P = 0.081; S-group: ∼20%; L-group: ∼51%), the change in neuromuscular fatigue resistance was related positively to the training-induced increase in PA (∼6%, P < 0.001) in the S-group (r = 0.739, P = 0.004) and negatively to the training-induced increase in FL (∼4%, P = 0.001) in the L-group (r = -0.568, P = 0.043). Both groups recovered similarly for MVC torque and peak power after the fatiguing task as compared with before training. We suggest that the relationships between the changes in muscle architecture and neuromuscular fatigue resistance depend on the muscle-tendon unit lengths at which the training is performed.NEW & NOTEWORTHY Eight weeks of isometric training at a long or short muscle-tendon unit length increased and did not change fascicle length, respectively. The "width" of the torque-angle relationship plateau became broader following isometric training at the long length. Despite marked differences in muscle architecture and functional adaptations between the groups, there was only a small-magnitude improvement in neuromuscular fatigue resistance, which was surprisingly negatively related to increased fascicle length in the long length-training group.
Collapse
Affiliation(s)
- Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.,Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Degens H, Jones DA. Are Force Enhancement after Stretch and Muscle Fatigue Due to Effects of Elevated Inorganic Phosphate and Low Calcium on Cross Bridge Kinetics? ACTA ACUST UNITED AC 2020; 56:medicina56050249. [PMID: 32443826 PMCID: PMC7279286 DOI: 10.3390/medicina56050249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 11/20/2022]
Abstract
Background and Objectives: Muscle fatigue is characterised by (1) loss of force, (2) decreased maximal shortening velocity and (3) a greater resistance to stretch that could be due to reduced intracellular Ca2+ and increased Pi, which alter cross bridge kinetics. Materials and Methods: To investigate this, we used (1) 2,3-butanedione monoxime (BDM), believed to increase the proportion of attached but non-force-generating cross bridges; (2) Pi that increases the proportion of attached cross bridges, but with Pi still attached; and (3) reduced activating Ca2+. We used permeabilised rat soleus fibres, activated with pCa 4.5 at 15 °C. Results: The addition of 1 mM BDM or 15 mM Pi, or the lowering of the Ca2+ to pCa 5.5, all reduced the isometric force by around 50%. Stiffness decreased in proportion to isometric force when the fibres were activated at pCa 5.5, but was well maintained in the presence of Pi and BDM. Force enhancement after a stretch increased with the length of stretch and Pi, suggesting a role for titin. Maximum shortening velocity was reduced by about 50% in the presence of BDM and pCa 5.5, but was slightly increased by Pi. Neither decreasing Ca2+ nor increasing Pi alone mimicked the effects of fatigue on muscle contractile characteristics entirely. Only BDM elicited a decrease of force and slowing with maintained stiffness, similar to the situation in fatigued muscle. Conclusions: This suggests that in fatigue, there is an accumulation of attached but low-force cross bridges that cannot be the result of the combined action of reduced Ca2+ or increased Pi alone, but is probably due to a combination of factors that change during fatigue.
Collapse
Affiliation(s)
- Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, Research Centre for Musculoskeletal Sciences & Sport Medicine, Manchester M1 5GD, UK;
- Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
- Correspondence: ; Tel.: +44-161-247-5686
| | - David A. Jones
- Department of Life Sciences, Manchester Metropolitan University, Research Centre for Musculoskeletal Sciences & Sport Medicine, Manchester M1 5GD, UK;
| |
Collapse
|
6
|
Kristensen AM, MacDougall KB, MacIntosh BR, Overgaard K. Is curvature of the force-velocity relationship affected by oxygen availability? Evidence from studies in ex vivo and in situ rat muscles. Pflugers Arch 2020; 472:597-608. [PMID: 32415461 DOI: 10.1007/s00424-020-02390-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 11/30/2022]
Abstract
The power of shortening contractions in skeletal muscle is determined by the force-velocity relationship. Fatigue has been reported to either increase or decrease the force-velocity curvature depending on experimental circumstances. These discrepant findings may be related to experimental differences in oxygen availability. We therefore investigated how the curvature of the force-velocity relationship in soleus and gastrocnemius rat muscles is affected during fatigue, in both an ex vivo setup without an intact blood perfusion and in an in situ setup with an intact blood perfusion. Furthermore, we investigated the effect of reduced oxygen concentrations and reduced diffusion distance on the curvature of the force-velocity relationship in ex vivo muscles, where muscle oxygen uptake relies on diffusion from the incubation medium. Muscles were electrically stimulated to perform repeated shortening contractions and force-velocity curves were determined in rested and fatigued conditions. The curvature increased during fatigue in the soleus muscles (both in situ and ex vivo), and decreased for the gastrocnemius muscles (in situ) or remained unchanged (ex vivo). Furthermore, under ex vivo conditions, neither reduced oxygen concentrations nor reduced diffusion distance conferred any substantial effect on the force-velocity curvature. In contrast, reduced oxygen availability and increased diffusion distance did increase the loss of maximal power during fatigue, mainly due to additional decreases in isometric force. We conclude that oxygen availability does not influence the fatigue-induced changes in force-velocity curvature. Rather, the observed variable fatigue profiles with regard to changes in curvature seem to be linked to the muscle fiber-type composition.
Collapse
Affiliation(s)
| | - K B MacDougall
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - B R MacIntosh
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - K Overgaard
- Department of Public Health, Aarhus University, Dalgas Avenue 4, Aarhus C, 8000, Aarhus, Denmark
| |
Collapse
|
7
|
Akagi R, Hinks A, Davidson B, Power GA. Differential contributions of fatigue-induced strength loss and slowing of angular velocity to power loss following repeated maximal shortening contractions. Physiol Rep 2020; 8:e14362. [PMID: 32034892 PMCID: PMC7007446 DOI: 10.14814/phy2.14362] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the relationship between fatigue-induced reductions in isometric torque and isotonic power and to quantify the extent to which the decreases in angular velocity and dynamic torque can explain the power loss immediately following an isotonic fatiguing task and throughout recovery in seven young males and six young females. All measurements were performed with both legs. For dorsiflexion, fatigue-related time-course changes in isometric maximal voluntary contraction (MVC) torque, angular velocity, dynamic torque, and power production following repeated maximal isotonic contractions (load: 20% MVC) were investigated before, immediately after, and 1, 2, 5 and 10 min after a fatiguing task. There were no relationships between the fatigue-related reductions in isometric MVC torque and peak power at any timepoint, suggesting that fatigue-induced reductions in isometric MVC torque does not entirely reflect fatigue-induced changes in dynamic performance. The relative contribution of fatigue-related reduction in dynamic torque on power loss was greater immediately following the task, and lower throughout recovery than the corresponding decrease in angular velocity. Thus, power loss immediately following the task was more strongly related to the decline in dynamic torque; however, this relationship shifted throughout recovery to a greater dependence on slowing of angular velocity for power loss.
Collapse
Affiliation(s)
- Ryota Akagi
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan.,Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Brooke Davidson
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|