1
|
Cortes S, Farhat E, Talarico G, Mennigen JA. The dynamic transcriptomic response of the goldfish brain under chronic hypoxia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101233. [PMID: 38608489 DOI: 10.1016/j.cbd.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Oxygen is essential to fuel aerobic metabolism. Some species evolved mechanisms to tolerate periods of severe hypoxia and even anoxia in their environment. Among them, goldfish (Carassius auratus) are unique, in that they do not enter a comatose state under severely hypoxic conditions. There is thus significant interest in the field of comparative physiology to uncover the mechanistic basis underlying hypoxia tolerance in goldfish, with a particular focus on the brain. Taking advantage of the recently published and annotated goldfish genome, we profile the transcriptomic response of the goldfish brain under normoxic (21 kPa oxygen saturation) and, following gradual reduction, constant hypoxic conditions after 1 and 4 weeks (2.1 kPa oxygen saturation). In addition to analyzing differentially expressed protein-coding genes and enriched pathways, we also profile differentially expressed microRNAs (miRs). Using in silico approaches, we identify possible miR-mRNA relationships. Differentially expressed transcripts compared to normoxia were either common to both timepoints of hypoxia exposure (n = 174 mRNAs; n = 6 miRs), or exclusive to 1-week (n = 441 mRNAs; n = 23 miRs) or 4-week hypoxia exposure (n = 491 mRNAs; n = 34 miRs). Under chronic hypoxia, an increasing number of transcripts, including those of paralogous genes, was downregulated over time, suggesting a decrease in transcription. GO-terms related to the vascular system, oxidative stress, stress signalling, oxidoreductase activity, nucleotide- and intermediary metabolism, and mRNA posttranscriptional regulation were found to be enriched under chronic hypoxia. Known 'hypoxamiRs', such as miR-210-3p/5p, and miRs such as miR-29b-3p likely contribute to posttranscriptional regulation of these pathways under chronic hypoxia in the goldfish brain.
Collapse
Affiliation(s)
- S Cortes
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - E Farhat
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Ggm Talarico
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada
| | - J A Mennigen
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Ingelson-Filpula WA, Hadj-Moussa H, Storey KB. MicroRNA transcriptomics in liver of the freeze-tolerant gray tree frog (Dryophytes versicolor) indicates suppression of energy-expensive pathways. Cell Biochem Funct 2023; 41:309-320. [PMID: 36823992 DOI: 10.1002/cbf.3783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
The rapid and reversible nature of microRNA (miRNA) transcriptional regulation is ideal for implementing global changes to cellular processes and metabolism, a necessary asset for the freeze-tolerant gray tree frog (Dryophytes versicolor). D. versicolor can freeze up to 42% of its total body water during the winter and then thaw completely upon more favorable conditions of spring. Herein, we examined the freeze-specific miRNA responses in the gray tree frog using RBiomirGS, a bioinformatic tool designed for the analysis of miRNA-seq transcriptomics in non-genome sequenced organisms. We identified 11 miRNAs differentially regulated during freezing (miR-140-3p, miR-181a-5p, miR-206-3p, miR-451a, miR-19a-3p, miR-101-3p, miR-30e-5p, miR-142-3p and -5p, miR-21-5p, and miR-34a-5p). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis suggests these miRNAs play roles in downregulating signaling pathways, apoptosis, and nuclear processes while enhancing ribosomal biogenesis. Overall, these findings point towards miRNA inducing a state of energy conservation by downregulating energy-expensive pathways, while ribosomal biogenesis may lead to prioritization of critical processes for freeze-tolerance survival.
Collapse
Affiliation(s)
| | | | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Naranjo M, Breedon SA, Storey KB. Cardiac microRNA expression profile in response to estivation. Biochimie 2023:S0300-9084(23)00001-9. [PMID: 36627041 DOI: 10.1016/j.biochi.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Couch's spadefoot toad (Scaphiopus couchii) spends most of the year underground in a hypometabolic state known as estivation. During this time, they overcome significant dehydration and lack of food through many mechanisms including employing metabolic rate depression (MRD), increasing urea concentration, switching to lipid oxidation as the primary energy source, and decreasing their breathing and heart rate. MicroRNA (miRNA) are known to regulate translation by targeting messenger RNA (mRNA) for degradation or temporary storage, with several studies having reported that miRNA is differentially expressed during MRD, including estivation. Thus, we hypothesized that miRNA would be involved in gene regulation during estivation in S. couchii heart. Next-generation sequencing and bioinformatic analyses were used to assess changes in miRNA expression in response to two-month estivation and to predict the downstream effects of this expression. KEGG and GO analyses indicated that ribosome and cardiac muscle contraction are among the pathways predicted to be upregulated, whereas cell signaling and fatty acid metabolism were predicted to be downregulated. Together these results suggest that miRNAs contribute to the regulation of gene expression related to cardiac muscle physiology and energy metabolism during estivation.
Collapse
Affiliation(s)
- Mairelys Naranjo
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Sarah A Breedon
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6.
| |
Collapse
|
4
|
Ingelson-Filpula WA, Cheng H, Eaton L, Pamenter ME, Storey KB. Small RNA sequencing in hypoxic naked mole-rat hearts suggests microRNA regulation of RNA- and translation-related processes. FEBS Lett 2022; 596:2821-2833. [PMID: 36120811 DOI: 10.1002/1873-3468.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) regularly endures intermittent periods of hypoxia in its burrows, surviving in part due to metabolic rate depression (MRD)-a strategy of conserving cellular resources by downregulating nonessential gene expression and reorganizing cellular processes. MicroRNA (miRNA) are short, noncoding RNAs already implicated for their roles in numerous models of extreme environmental stress; given their rapid, reversible nature, they are ideal for implementing MRD. We performed small RNA sequencing on cardiac tissue from normoxic vs. 24 h hypoxic naked mole-rats, and used bioinformatics to predict eighteen miRNAs which may be differentially regulated during hypoxia. Gene Ontology and KEGG pathway mapping further suggest these miRNAs play roles in largely translation-related functions, including RNA processing and catabolism.
Collapse
Affiliation(s)
- W Aline Ingelson-Filpula
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Hang Cheng
- Biology Department, University of Ottawa, Marie-Curie Pvt, Ottawa, Ontario, K1N 9A7, Canada
| | - Liam Eaton
- Biology Department, University of Ottawa, Marie-Curie Pvt, Ottawa, Ontario, K1N 9A7, Canada
| | - Matthew E Pamenter
- Biology Department, University of Ottawa, Marie-Curie Pvt, Ottawa, Ontario, K1N 9A7, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
5
|
Farhat E, Talarico GGM, Grégoire M, Weber JM, Mennigen JA. Epigenetic and post-transcriptional repression support metabolic suppression in chronically hypoxic goldfish. Sci Rep 2022; 12:5576. [PMID: 35368037 PMCID: PMC8976842 DOI: 10.1038/s41598-022-09374-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Goldfish enter a hypometabolic state to survive chronic hypoxia. We recently described tissue-specific contributions of membrane lipid composition remodeling and mitochondrial function to metabolic suppression across different goldfish tissues. However, the molecular and especially epigenetic foundations of hypoxia tolerance in goldfish under metabolic suppression are not well understood. Here we show that components of the molecular oxygen-sensing machinery are robustly activated across tissues irrespective of hypoxia duration. Induction of gene expression of enzymes involved in DNA methylation turnover and microRNA biogenesis suggest a role for epigenetic transcriptional and post-transcriptional suppression of gene expression in the hypoxia-acclimated brain. Conversely, mechanistic target of rapamycin-dependent translational machinery activity is not reduced in liver and white muscle, suggesting this pathway does not contribute to lowering cellular energy expenditure. Finally, molecular evidence supports previously reported chronic hypoxia-dependent changes in membrane cholesterol, lipid metabolism and mitochondrial function via changes in transcripts involved in cholesterol biosynthesis, β-oxidation, and mitochondrial fusion in multiple tissues. Overall, this study shows that chronic hypoxia robustly induces expression of oxygen-sensing machinery across tissues, induces repressive transcriptional and post-transcriptional epigenetic marks especially in the chronic hypoxia-acclimated brain and supports a role for membrane remodeling and mitochondrial function and dynamics in promoting metabolic suppression.
Collapse
Affiliation(s)
- Elie Farhat
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Giancarlo G M Talarico
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Mélissa Grégoire
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Jean-Michel Weber
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
6
|
Hadj-Moussa H, Hawkins LJ, Storey KB. Role of MicroRNAs in Extreme Animal Survival Strategies. Methods Mol Biol 2022; 2257:311-347. [PMID: 34432286 DOI: 10.1007/978-1-0716-1170-8_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The critical role microRNAs play in modulating global functions is emerging, both in the maintenance of homeostatic mechanisms and in the adaptation to diverse environmental stresses. When stressed, cells must divert metabolic requirements toward immediate survival and eventual recovery and the unique features of miRNAs, such as their relatively ATP-inexpensive biogenesis costs, and the quick and reversible nature of their action, renders them excellent "master controllers" for rapid responses. Many animal survival strategies for dealing with extreme environmental pressures involve prolonged retreats into states of suspended animation to extend the time that they can survive on their limited internal fuel reserves until conditions improve. The ability to retreat into such hypometabolic states is only possible by coupling the global suppression of nonessential energy-expensive functions with an activation of prosurvival networks, a process in which miRNAs are now known to play a major role. In this chapter, we discuss the activation, expression, biogenesis, and unique attributes of miRNA regulation required to facilitate profound metabolic rate depression and implement stress-specific metabolic adaptations. We examine the role of miRNA in strategies of biochemical adaptation including mammalian hibernation, freeze tolerance, freeze avoidance, anoxia and hypoxia survival, estivation, and dehydration tolerance. By comparing these seemingly different adaptive programs in traditional and exotic animal models, we highlight both unique and conserved miRNA-meditated mechanisms for survival. Additional topics discussed include transcription factor networks, temperature dependent miRNA-targeting, and novel species-specific and stress-specific miRNAs.
Collapse
Affiliation(s)
| | - Liam J Hawkins
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
7
|
MicroRNA Cues from Nature: A Roadmap to Decipher and Combat Challenges in Human Health and Disease? Cells 2021; 10:cells10123374. [PMID: 34943882 PMCID: PMC8699674 DOI: 10.3390/cells10123374] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding RNA (18–24 nt long) that fine-tune gene expression at the post-transcriptional level. With the advent of “multi-omics” analysis and sequencing approaches, they have now been implicated in every facet of basic molecular networks, including metabolism, homeostasis, and cell survival to aid cellular machinery in adapting to changing environmental cues. Many animals must endure harsh environmental conditions in nature, including cold/freezing temperatures, oxygen limitation (anoxia/hypoxia), and food or water scarcity, often requiring them to revamp their metabolic organization, frequently on a seasonal or life stage basis. MicroRNAs are important regulatory molecules in such processes, just as they are now well-known to be involved in many human responses to stress or disease. The present review outlines the role of miRNAs in natural animal models of environmental stress and adaptation including torpor/hibernation, anoxia/hypoxia tolerance, and freeze tolerance. We also discuss putative medical applications of advances in miRNA biology including organ preservation for transplant, inflammation, ageing, metabolic disorders (e.g., obesity), mitochondrial dysfunction (mitoMirs) as well as specialized miRNA subgroups respective to low temperature (CryomiRs) and low oxygen (OxymiRs). The review also covers differential regulation of conserved and novel miRNAs involved at cell, tissue, and stress specific levels across multiple species and their roles in survival. Ultimately, the species-specific comparison and conserved miRNA responses seen in evolutionarily disparate animal species can help us to understand the complex miRNA network involved in regulating and reorganizing metabolism to achieve diverse outcomes, not just in nature, but in human health and disease.
Collapse
|
8
|
Liu L, Zhang P, Gao Q, Feng X, Han L, Zhang F, Bai Y, Han M, Hu H, Dai F, Zhang G, Tong X. Comparative Transcriptome Analysis Reveals bmo-miR-6497-3p Regulate Circadian Clock Genes during the Embryonic Diapause Induction Process in Bivoltine Silkworm. INSECTS 2021; 12:739. [PMID: 34442305 PMCID: PMC8396838 DOI: 10.3390/insects12080739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
Diapause is one of the survival strategies of insects for confronting adverse environmental conditions. Bombyx mori displays typical embryonic diapause, and offspring diapause depends on the incubation environment of the maternal embryo in the bivoltine strains of the silkworm. However, the molecular mechanisms of the diapause induction process are still poorly understood. In this study, we compared the differentially expressed miRNAs (DEmiRs) in bivoltine silkworm embryos incubated at diapause- (25 °C) and non-diapause (15 °C)-inducing temperatures during the blastokinesis (BK) and head pigmentation (HP) phases using transcriptome sequencing. There were 411 known miRNAs and 71 novel miRNAs identified during the two phases. Among those miRNAs, there were 108 and 74 DEmiRs in the BK and HP groups, respectively. By the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the predicted target genes of the DEmiRs, we found that aside from metabolism, the targets were also enriched in phototransduction-fly and insect hormone biosynthesis in the BK group and the HP group, respectively. Dual luciferase reporter assay illustrated that bmo-miR-6497-3p directly regulated Bmcycle and subsequently regulated the expression of circadian genes. These results imply that microRNAs, as vitally important regulators, respond to different temperatures and participate in the diapause induction process across species.
Collapse
Affiliation(s)
- Lulu Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| | - Pan Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (P.Z.); (X.F.); (L.H.); (F.Z.)
| | - Qiang Gao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| | - Xiaoge Feng
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (P.Z.); (X.F.); (L.H.); (F.Z.)
| | - Lan Han
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (P.Z.); (X.F.); (L.H.); (F.Z.)
| | - Fengbin Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (P.Z.); (X.F.); (L.H.); (F.Z.)
| | - Yanmin Bai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| | - Gaojun Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (P.Z.); (X.F.); (L.H.); (F.Z.)
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (L.L.); (Q.G.); (Y.B.); (M.H.); (H.H.); (F.D.)
| |
Collapse
|
9
|
Hadj-Moussa H, Chiasson S, Cheng H, Eaton L, Storey KB, Pamenter ME. MicroRNA-mediated inhibition of AMPK coordinates tissue-specific downregulation of skeletal muscle metabolism in hypoxic naked mole-rats. J Exp Biol 2021; 224:271234. [PMID: 34374781 DOI: 10.1242/jeb.242968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Naked mole-rats reduce their metabolic requirements to tolerate severe hypoxia. However, the regulatory mechanisms that underpin this metabolic suppression have yet to be elucidated. 5'-AMP-activated protein kinase (AMPK) is the cellular 'master' energy effector and we hypothesized that alterations in the AMPK pathway contribute to metabolic reorganization in hypoxic naked mole-rat skeletal muscle. To test this hypothesis, we exposed naked mole-rats to 4 h of normoxia (21% O2) or severe hypoxia (3% O2), while indirectly measuring whole-animal metabolic rate and fuel preference. We then isolated skeletal muscle and assessed protein expression and post-translational modification of AMPK, and downstream changes in key glucose and fatty acid metabolic proteins mediated by AMPK, including acetyl-CoA carboxylase (ACC1), glycogen synthase (GS) and glucose transporters (GLUTs) 1 and 4. We found that in hypoxic naked mole-rats (1) metabolic rate decreased ∼80% and fuel use switched to carbohydrates, and that (2) levels of activated phosphorylated AMPK and GS, and GLUT4 expression were downregulated in skeletal muscle, while ACC1 was unchanged. To explore the regulatory mechanism underlying this hypometabolic state, we used RT-qPCR to examine 55 AMPK-associated microRNAs (miRNAs), which are short non-coding RNA post-transcriptional silencers. We identified changes in 10 miRNAs (three upregulated and seven downregulated) implicated in AMPK downregulation. Our results suggest that miRNAs and post-translational mechanisms coordinately reduce AMPK activity and downregulate metabolism in naked mole-rat skeletal muscle during severe hypoxia. This novel mechanism may support tissue-specific prioritization of energy for more essential organs in hypoxia.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Sarah Chiasson
- Biology Department, University of Ottawa, Ottawa, ON, Canada, K1N 9A7
| | - Hang Cheng
- Biology Department, University of Ottawa, Ottawa, ON, Canada, K1N 9A7
| | - Liam Eaton
- Biology Department, University of Ottawa, Ottawa, ON, Canada, K1N 9A7
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Matthew E Pamenter
- Biology Department, University of Ottawa, Ottawa, ON, Canada, K1N 9A7.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
10
|
Liu C, Yuan J, Zhang X, Jin S, Li F, Xiang J. Clustering genomic organization of sea cucumber miRNAs impacts their evolution and expression. Genomics 2021; 113:3544-3555. [PMID: 34371099 DOI: 10.1016/j.ygeno.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Echinoderms are marine deuterostomes with fascinating adaptation features such as aestivation and organ regeneration. However, post-transcriptional gene regulation by microRNAs (miRNAs) underlying these features are largely unexplored. Here, using homology-based and de novo approaches supported by expression data, we provided a comprehensive annotation of miRNA genes in the sea cucumber Apostichopus japonicus. By linkage and phylogenic analyses, we characterized miRNA genomic organization, evolutionary history and expression regulation. The results showed that sea cucumbers evolved a large number of new miRNAs, which tended to form polycistronic clusters via tandem duplication that had been especially active in the echinoderms. Most new miRNAs were weakly expressed, but miRNA clustering increased the expression level of clustered new miRNAs. The most abundantly expressed new miRNAs were organized in a single tandem cluster (cluster n2), which was activated during aestivation and intestine regeneration. Overall, our analyses suggest that clustering of miRNAs is important for their evolutionary origin, expression control, and functional cooperation.
Collapse
Affiliation(s)
- Chengzhang Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianbo Yuan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaojun Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Songjun Jin
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fuhua Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
11
|
Ridlo MR, Kim EH, Kim GA. MicroRNA-210 Regulates Endoplasmic Reticulum Stress and Apoptosis in Porcine Embryos. Animals (Basel) 2021; 11:ani11010221. [PMID: 33477489 PMCID: PMC7831048 DOI: 10.3390/ani11010221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 01/14/2021] [Indexed: 01/26/2023] Open
Abstract
Simple Summary The purpose of this study was to explore the effect of miR-210 on in vitro embryo development, mRNA expression related endoplasmic reticulum (ER) stress. Treatment with a miR-210-inhibitor significantly improved in vitro embryo development and total blastocyst cell number (TCN). Furthermore, miR-210-inhibitor treatment downregulated ER stress and apoptosis-related gene expression, while simultaneously improving embryo capacity. In contrast, a miR-210-mimic decreased in vitro embryo development, TCN, upregulated ER stress and apoptosis genes, and concomitantly impaired embryo quality. Therefore, we suggest that miR-210 plays an important role in porcine in vitro embryo development. Abstract Endoplasmic reticulum (ER) stress can be triggered during in vitro embryo production and is a major obstacle to embryo survival. MicroRNA (miR)-210 is associated with cellular adaptation to cellular stress and inflammation. An experiment was conducted to understand the effects of miR-210 on in vitro embryo development, ER stress, and apoptosis; to achieve this, miR-210 was microinjected into parthenogenetically activated embryos. Our results revealed that miR-210 inhibition significantly enhanced the cleavage rate, blastocyst formation rate, and total cell number (TCN) of blastocysts, and reduced expression levels of XBP1 (p < 0.05). miR-210 inhibition greatly reduced the expression of ER stress-related genes (uXBP1, sXBP1, ATF4, and PTPN1) and Caspase 3 and increased the levels of NANOG and SOX2 (p < 0.05). A miR-210-mimic significantly decreased the cleavage, blastocyst rate, TCN, and expression levels of XBP1 compared with other groups (p < 0.05). The miR-210-mimic impaired the expression levels of uXBP1, sXBP1, ATF4, PTPN1, and Caspase 3 and decreased the expression of NANOG and SOX2 (p < 0.05). In conclusion, miR-210 plays an essential role in porcine in vitro embryo development. Therefore, we suggest that miR-210 inhibition could alleviate ER stress and reduce apoptosis to support the enhancement of in vitro embryo production.
Collapse
Affiliation(s)
- Muhammad Rosyid Ridlo
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (M.R.R.); (E.H.K.)
- Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Eui Hyun Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (M.R.R.); (E.H.K.)
| | - Geon A. Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejon 34824, Korea
- Correspondence:
| |
Collapse
|
12
|
Hadj-Moussa H, Pamenter ME, Storey KB. Hypoxic naked mole-rat brains use microRNA to coordinate hypometabolic fuels and neuroprotective defenses. J Cell Physiol 2020; 236:5080-5097. [PMID: 33305831 DOI: 10.1002/jcp.30216] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022]
Abstract
Naked mole-rats are among the mammalian champions of hypoxia tolerance. They evolved adaptations centered around reducing metabolic rate to overcome the challenges experienced in their underground burrows. In this study, we used next-generation sequencing to investigate one of the factors likely supporting hypoxia tolerance in naked mole-rat brains, posttranscriptional microRNAs (miRNAs). Of the 212 conserved miRNAs identified using small RNA sequencing, 18 displayed significant differential expression during hypoxia. Bioinformatic enrichment revealed that hypoxia-mediated miRNAs were suppressing energy expensive processes including de novo protein translation and cellular proliferation. This suppression occurred alongside the activation of neuroprotective and neuroinflammatory pathways, and the induction of central signal transduction pathways including HIF-1α and NFκB via miR-335, miR-101, and miR-155. MiRNAs also coordinated anaerobic glycolytic fuel sources, where hypoxia-upregulated miR-365 likely suppressed protein levels of ketohexokinase, the enzyme responsible for catalyzing the first committed step of fructose catabolism. This was further supported by a hypoxia-mediated reduction in glucose transporter 5 proteins that import fructose into the cell. Yet, messenger RNA and protein levels of lactate dehydrogenase, which converts pyruvate to lactate in the absence of oxygen, were elevated during hypoxia. Together, this demonstrated the induction of anaerobic glycolysis despite a lack of reliance on fructose as the primary fuel source, suggesting that hypoxic brains are metabolically different than anoxic naked mole-rat brains that were previously found to shift to fructose-based glycolysis. Our findings contribute to the growing body of oxygen-responsive miRNAs "OxymiRs" that facilitate natural miRNA-mediated mechanisms for successful hypoxic exposures.
Collapse
Affiliation(s)
| | - Matthew E Pamenter
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|