1
|
Seth RK, Yadav P, Reynolds SE. Dichotomous sperm in Lepidopteran insects: a biorational target for pest management. FRONTIERS IN INSECT SCIENCE 2023; 3:1198252. [PMID: 38469506 PMCID: PMC10926456 DOI: 10.3389/finsc.2023.1198252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 03/13/2024]
Abstract
Lepidoptera are unusual in possessing two distinct kinds of sperm, regular nucleated (eupyrene) sperm and anucleate (apyrene) sperm ('parasperm'). Sperm of both types are transferred to the female and are required for male fertility. Apyrene sperm play 'helper' roles, assisting eupyrene sperm to gain access to unfertilized eggs and influencing the reproductive behavior of mated female moths. Sperm development and behavior are promising targets for environmentally safer, target-specific biorational control strategies in lepidopteran pest insects. Sperm dimorphism provides a wide window in which to manipulate sperm functionality and dynamics, thereby impairing the reproductive fitness of pest species. Opportunities to interfere with spermatozoa are available not only while sperm are still in the male (before copulation), but also in the female (after copulation, when sperm are still in the male-provided spermatophore, or during storage in the female's spermatheca). Biomolecular technologies like RNAi, miRNAs and CRISPR-Cas9 are promising strategies to achieve lepidopteran pest control by targeting genes directly or indirectly involved in dichotomous sperm production, function, or persistence.
Collapse
Affiliation(s)
- Rakesh K. Seth
- Department of Zoology, University of Delhi, Delhi, India
| | - Priya Yadav
- Department of Zoology, University of Delhi, Delhi, India
| | - Stuart E. Reynolds
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
2
|
He M, Liu K, Cao J, Chen Q. An update on the role and potential mechanisms of clock genes regulating spermatogenesis: A systematic review of human and animal experimental studies. Rev Endocr Metab Disord 2023; 24:585-610. [PMID: 36792803 DOI: 10.1007/s11154-022-09783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/25/2022] [Indexed: 02/17/2023]
Abstract
Circadian clocks can be traced in nearly all life kingdoms, with the male reproductive system no exception. However, our understanding of the circadian clock in spermatogenesis seems to fall behind other scenarios. The present review aims to summarize the current knowledge about the role and especially the potential mechanisms of clock genes in spermatogenesis regulation. Accumulating studies have revealed rhythmic oscillation in semen parameters and some physiological events of spermatogenesis. Disturbing the clock gene expression by genetic mutations or environmental changes will also notably damage spermatogenesis. On the other hand, the mechanisms of spermatogenetic regulation by clock genes remain largely unclear. Some recent studies, although not revealing the entire mechanisms, indeed attempted to shed light on this issue. Emerging clues hinted that gonadal hormones, retinoic acid signaling, homologous recombination, and the chromatoid body might be involved in the regulation of spermatogenesis by clock genes. Then we highlight the challenges and the promising directions for future studies so as to stimulate attention to this critical field which has not gained adequate concern.
Collapse
Affiliation(s)
- Mengchao He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Kun Liu
- Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, 510630, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
3
|
Habtewold T, Tapanelli S, Masters EKG, Windbichler N, Christophides GK. The circadian clock modulates Anopheles gambiae infection with Plasmodium falciparum. PLoS One 2022; 17:e0278484. [PMID: 36454885 PMCID: PMC9714873 DOI: 10.1371/journal.pone.0278484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Key behaviours, physiologies and gene expressions in Anopheles mosquitoes impact the transmission of Plasmodium. Such mosquito factors are rhythmic to closely follow diel rhythms. Here, we set to explore the impact of the mosquito circadian rhythm on the tripartite interaction between the vector, the parasite and the midgut microbiota, and investigate how this may affect the parasite infection outcomes. We assess Plasmodium falciparum infection prevalence and intensity, as a proxy for gametocyte infectivity, in Anopheles gambiae mosquitoes that received a gametocyte-containing bloodfeed and measure the abundance of the midgut microbiota at different times of the mosquito rearing light-dark cycle. Gametocyte infectivity is also compared in mosquitoes reared and maintained under a reversed light-dark regime. The effect of the circadian clock on the infection outcome is also investigated through silencing of the CLOCK gene that is central in the regulation of animal circadian rhythms. The results reveal that the A. gambiae circadian cycle plays a key role in the intensity of infection of P. falciparum gametocytes. We show that parasite gametocytes are more infectious during the night-time, where standard membrane feeding assays (SMFAs) at different time points in the mosquito natural circadian rhythm demonstrate that gametocytes are more infectious when ingested at midnight than midday. When mosquitoes were cultured under a reversed light/dark regime, disrupting their natural physiological homeostasis, and infected with P. falciparum at evening hours, the infection intensity and prevalence were significantly decreased. Similar results were obtained in mosquitoes reared under the standard light/dark regime upon silencing of CLOCK, a key regulator of the circadian rhythm, highlighting the importance of the circadian rhythm for the mosquito vectorial capacity. At that time, the mosquito midgut microbiota load is significantly reduced, while the expression of lysozyme C-1 (LYSC-1) is elevated, which is involved in both the immune response and microbiota digestion. We conclude that the tripartite interactions between the mosquito vector, the malaria parasite and the mosquito gut microbiota are finely tuned to support and maintain malaria transmission. Our data add to the knowledge framework required for designing appropriate and biologically relevant SMFA protocols.
Collapse
Affiliation(s)
- Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sofia Tapanelli
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ellen K. G. Masters
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
4
|
Shi X, Liu X, Cooper AM, Silver K, Merzendorfer H, Zhu KY, Zhang J. Vacuolar (H + )-ATPase subunit c is essential for the survival and systemic RNA interference response in Locusta migratoria. PEST MANAGEMENT SCIENCE 2022; 78:1555-1566. [PMID: 34981606 DOI: 10.1002/ps.6774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Vacuolar (H+ )-ATPase (V-ATPase) is a multi-subunit enzyme that hydrolyzes adenosine triphosphate (ATP) to transport protons across a cellular membrane, and it plays an important role in numerous biological processes, including in growth, development and immune responses. The c subunit of V-ATPase is a highly conserved subunit of the rotatory proteolipid ring that is required for binding and transporting protons. To date, there are only a few published reports on V-ATPase-c functions in insects. RESULTS We identified and characterized the V-ATPase-c gene in Locusta migratoria, one of the most destructive agricultural insect pests in the world. LmV-ATPase-c was predominately expressed in Malpighian tubules of nymphs, followed by the hindgut and ovary, while the other tissues showed relatively low expression levels. Silencing of LmV-ATPase-c caused severe molting defects in nymphs and a high mortality rate of > 90%. Histological staining and microscopic examination of sections from the abdominal cuticle revealed the absence of newly formed cuticle in nymphs that were injected with dsLmV-ATPase-c. In addition, silencing of LmV-ATPase-c transcript levels significantly impaired RNA interference (RNAi) efficiency of a reporter gene. By quantifying double-stranded RNA (dsRNA) amounts by quantitative polymerase chain reaction (PCR), we found that RNAi against LmV-ATPase-c provoked a dramatic accumulation of dsRNA in the endosomes of epidermal and midgut cells of Locusta migratoria. CONCLUSION Our results indicate that LmV-ATPase-c is indispensable for the formation of new cuticle during the molting process and has pivotal functions in dsRNA escape from endosomes. LmV-ATPase-c might be a valuable target for developing new strategies for insect pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuekai Shi
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - Xiaojian Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | | | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
5
|
Mondragon AA, Yalonetskaya A, Ortega AJ, Zhang Y, Naranjo O, Elguero J, Chung WS, McCall K. Lysosomal Machinery Drives Extracellular Acidification to Direct Non-apoptotic Cell Death. Cell Rep 2020; 27:11-19.e3. [PMID: 30943394 PMCID: PMC6613820 DOI: 10.1016/j.celrep.2019.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 02/18/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023] Open
Abstract
Cell death is a fundamental aspect of development, homeostasis, and disease; yet, our understanding of non-apoptotic forms of cell death is limited. One such form is phagoptosis, in which one cell utilizes phagocytosis machinery to kill another cell that would otherwise continue living. We have previously identified a non-autonomous requirement of phagocytosis machinery for the developmental programmed cell death of germline nurse cells in the Drosophila ovary; however, the precise mechanism of death remained elusive. Here, we show that lysosomal machinery acting in epithelial follicle cells is used to non-autonomously induce the death of nearby germline cells. Stretch follicle cells recruit V-ATPases and chloride channels to their plasma membrane to extracellularly acidify the germline and release cathepsins that destroy the nurse cells. Our results reveal a role for lysosomal machinery acting at the plasma membrane to cause the death of neighboring cells, providing insight into mechanisms driving non-autonomous cell death. Mondragon et al. show that V-ATPase proton pumps localize to the plasma membrane of follicle cells and promote extracellular acidification to eliminate adjacent nurse cells in the Drosophila ovary. The follicle cells subsequently release cathepsins by exocytosis into the nurse cells to promote their final degradation.
Collapse
Affiliation(s)
- Albert A Mondragon
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Alla Yalonetskaya
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Anthony J Ortega
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Yuanhang Zhang
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Oandy Naranjo
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Johnny Elguero
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Won-Suk Chung
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - Kimberly McCall
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Pang YY, Zhang C, Xu MJ, Huang GY, Cheng YX, Yang XZ. The transcriptome sequencing and functional analysis of eyestalk ganglions in Chinese mitten crab (Eriocheir sinensis) treated with different photoperiods. PLoS One 2019; 14:e0210414. [PMID: 30645610 PMCID: PMC6333377 DOI: 10.1371/journal.pone.0210414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
Photoperiod plays an important role in individual growth, development, and metabolism in crustaceans. The growth and reproduction of crabs are closely related to the photoperiod. However, as of yet, there are still no transcriptomic reports of eyestalk ganglions treated under different photoperiods in the Chinese mitten crab (Eriocheir sinensis), which is a benthonic crab with high commercial value in Asia. In this study, we collected the eyestalk ganglions of crabs that were reared under different photoperiods, including a control group (L: D = 12 h: 12 h, named CC), a constant light group (L: D = 24 h: 0 h, named LL) and a constant darkness group (L: D = 0 h: 24 h, named DD). RNA sequencing was performed on these tissues in order to examine the effects of different photoperiods. The total numbers of clean reads from the CC, LL and DD groups were 48,772,584 bp, 53,943,281 bp and 53,815,178 bp, respectively. After de novo assembly, 161,380 unigenes were obtained and were matched with different databases. The DEGs were significantly enriched in phototransduction and energy metabolism pathways. Results from RT-qPCR showed that TRP channel protein (TRP) in the phototransduction pathway had a significantly higher level of expression in LL and DD groups than in the CC group. We found that the downregulation of the pyruvate dehydrogenase complex (PDC) gene and the upregulation phosphoenolpyruvate carboxykinase (PPC) gene were involved in energy metabolism processes in LL or DD. In addition, we also found that the upregulation of the expression level of the genes Gαq, pyruvate kinase (PK), NADH peroxidase (NADH) and ATPase is involved in phototransduction and energy metabolism. These results may shed some light on the molecular mechanism underlying the effect of photoperiod in physiological activity of E. sinensis.
Collapse
Affiliation(s)
- Yang-yang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Cong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Min-jie Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Gen-yong Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yong-xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- * E-mail: (XZY); (YXC)
| | - Xiao-zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- * E-mail: (XZY); (YXC)
| |
Collapse
|
7
|
Al-Fifi ZI, Mujallid MI. Effect of circadian on the activities of ion transport ATPases and histological structure of kidneys in mice. Saudi J Biol Sci 2018; 26:963-969. [PMID: 31303826 PMCID: PMC6601028 DOI: 10.1016/j.sjbs.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/17/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
The impacts of unnatural every day cycles (circadian) for 60 days on the histological structure of kidneys and ATPase activities in MF1 mice were studied. The exposure times were 16 h dark, 16 h light, 24 h dark, and 24 h light, and control exposure times were 12 h dark followed by 12 h light. Our results showed an increase in the total ATPase activity of mice in all groups. Additionally, the activity of the enzyme Na+/K+-ATPase was increased after 24 h darkness, 24 h light, and 16 h light exposures compared to control. The enzyme Mg+2-ATPase activities of the groups were higher when exposed to 16 h light, 24 h light, 24 h darkness and 16 h darkness. The activities of total ATPase, Na+/K+-ATPase and Mg+2-ATPase in kidneys were increased in all groups after 24 h light, 24 h darkness, 16 h darkness and 16 h light exposures. Interestingly, the activity of V-type ATPase was reduced after 16 h darkness, 24 h darkness and 16 h light. Taking everything into account, changes in the day by day cycle prompt neurotic changes, enzymatic and histological changes in the kidneys of mice. More studies should be directed to explore the impacts of light and darkness that can prompt these progressions.
Collapse
Affiliation(s)
- Zarraq I Al-Fifi
- Department of Biology, Faculty of Science, Jazan University, Saudi Arabia
| | - Mohammad I Mujallid
- Department of Biology, Faculty of Science, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
8
|
Label-free based quantitative proteomic analysis identifies proteins involved in the testis maturation of Bactrocera dorsalis (Hendel). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 25:9-18. [DOI: 10.1016/j.cbd.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 11/23/2022]
|
9
|
Affiliation(s)
- Khyati
- Department of Zoology, University of Delhi, Delhi, India
| | - Indu Malik
- Department of Zoology, University of Delhi, Delhi, India
| | | |
Collapse
|
10
|
Hiroyoshi S, Yoshimura J, Iwabuchi K, Reddy GVP, Mitsuhashi J. Effects of pre-overwintering conditions on eupyrene and apyrene spermatogenesis after overwintering in Polygonia c-aureum (Lepidoptera: Nymphalidae). JOURNAL OF INSECT PHYSIOLOGY 2017; 100:1-8. [PMID: 28457724 DOI: 10.1016/j.jinsphys.2017.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Sperm polymorphism is widely known in invertebrates. In insects, Lepidoptera has two types of sperm: nucleated eupyrene (fertile) sperm and anucleated apyrene (unfertile) sperm. These sperm types are produced during post-embryogenesis, and eupyrene spermatogenesis precedes apyrene spermatogenesis. During overwintering, spermatogenesis stops and a portion of undifferentiated-stage spermatocytes degenerate. After overwintering, spermatogenesis restarts with unaffected spermatogonia. However, how new spermatozoa arise in the adult testes after overwintering is not known in Lepidoptera. In this study, we investigated the spermatogenesis events in the nymphalid butterfly Polygonia c-aureum after overwintering under various environmental conditions. Our results indicate that both eupyrene and apyrene spermatogenesis restart at any stopping stage and sperm of these types are regenerated in no particular order after adult insect overwintering. This suggests that the spermatogenesis occurring after overwintering proceeds without embryogenetic restrictions related to the developmental sequence.
Collapse
Affiliation(s)
- Satoshi Hiroyoshi
- Laboratory of Applied Entomology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | - Jin Yoshimura
- Graduate School of Science and Technology and Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu 432-8561, Japan; Marine Biosystems Research Center, Chiba University, Kamogawa, Chiba 299-5502, Japan; Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA.
| | - Kikuo Iwabuchi
- Laboratory of Applied Entomology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | - Gadi V P Reddy
- Montana State University, Western Triangle Ag Research Center, 9546 Old Shelby Rd., P. O. Box 656, Conrad, MT 59425, USA.
| | - Jun Mitsuhashi
- Laboratory of Applied Entomology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
11
|
Simmons LW, Beveridge M, Li L, Tan Y, Millar AH. Ontogenetic changes in seminal fluid gene expression and the protein composition of cricket seminal fluid. Evol Dev 2014; 16:101-9. [DOI: 10.1111/ede.12068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary BiologyThe University of Western AustraliaCrawley6009Australia
| | - Maxine Beveridge
- Centre for Evolutionary BiologyThe University of Western AustraliaCrawley6009Australia
| | - Lie Li
- Centre for Comparative Analysis of Biomolecular NetworksThe University of Western AustraliaCrawley6009Australia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawley6009Australia
| | - Yew‐Foon Tan
- Centre for Evolutionary BiologyThe University of Western AustraliaCrawley6009Australia
- Centre for Comparative Analysis of Biomolecular NetworksThe University of Western AustraliaCrawley6009Australia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawley6009Australia
| | - A. Harvey Millar
- Centre for Comparative Analysis of Biomolecular NetworksThe University of Western AustraliaCrawley6009Australia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawley6009Australia
| |
Collapse
|
12
|
Kotwica-Rolinska J, Gvakharia BO, Kedzierska U, Giebultowicz JM, Bebas P. Effects of period RNAi on V-ATPase expression and rhythmic pH changes in the vas deferens of Spodoptera littoralis (Lepidoptera: Noctuidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:522-32. [PMID: 23499932 DOI: 10.1016/j.ibmb.2013.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/23/2013] [Accepted: 03/04/2013] [Indexed: 05/03/2023]
Abstract
Circadian clocks (oscillators) regulate multiple aspects of insect behaviour and physiology. The circadian system located in the male reproductive tract of Lepidoptera orchestrates rhythmic sperm release from testis and sperm maturation in the upper vas deferens (UVD). Our previous research on the cotton leafworm, Spodoptera littoralis, suggested rhythmic changes in the V-ATPase levels in the UVD epithelium, which correlated with rhythmic pH fluctuations in the UVD lumen. However, it was not known whether UVD cells contain clock mechanism that generates these daily fluctuations. In the current paper, we show circadian rhythm in the expression of clock gene period at the mRNA and protein level in the UVD epithelium. To determine the role of PER in V-ATPase and pH regulation, testes-UVD complexes were treated in vitro with double-stranded fragments of per mRNA (dsRNA). This treatment, which transiently lowered per mRNA and protein in the UVD, altered expression of V-ATPase c subunit. In addition, per RNAi caused a significant delay in the UVD lumen acidification. These data demonstrate that the UVD molecular oscillator involving the period gene plays an essential role in the regulation of rhythmic V-ATPase activity and periodic acidification of the UVD lumen.
Collapse
Affiliation(s)
- Joanna Kotwica-Rolinska
- Departament of Animal Physiology, Zoological Institute, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland
| | | | | | | | | |
Collapse
|
13
|
Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 2011; 108:E421-30. [PMID: 21715657 DOI: 10.1073/pnas.1100584108] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anopheles gambiae, the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host seeking, egg laying, and sugar feeding. However, little work has been performed to elucidate the molecular basis for these daily rhythms. To study how gene expression is regulated globally by diel and circadian mechanisms, we have undertaken a DNA microarray analysis of An. gambiae under light/dark cycle (LD) and constant dark (DD) conditions. Adult mated, non-blood-fed female mosquitoes were collected every 4 h for 48 h, and samples were processed with DNA microarrays. Using a cosine wave-fitting algorithm, we identified 1,293 and 600 rhythmic genes with a period length of 20-28 h in the head and body, respectively, under LD conditions, representing 9.7 and 4.5% of the An. gambiae gene set. A majority of these genes was specific to heads or bodies. Examination of mosquitoes under DD conditions revealed that rhythmic programming of the transcriptome is dependent on an interaction between the endogenous clock and extrinsic regulation by the LD cycle. A subset of genes, including the canonical clock components, was expressed rhythmically under both environmental conditions. A majority of genes had peak expression clustered around the day/night transitions, anticipating dawn and dusk. Genes cover diverse biological processes such as transcription/translation, metabolism, detoxification, olfaction, vision, cuticle regulation, and immunity, and include rate-limiting steps in the pathways. This study highlights the fundamental roles that both the circadian clock and light play in the physiology of this important insect vector and suggests targets for intervention.
Collapse
|
14
|
Kotwica J, Joachimiak E, Polanska MA, Majewska MM, Giebultowicz JM, Bebas P. Diurnal rhythm in expression and release of yolk protein in the testis of Spodoptera littoralis (Lepidoptera: Noctuidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:264-272. [PMID: 21216288 DOI: 10.1016/j.ibmb.2011.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 05/30/2023]
Abstract
Circadian clocks (oscillators) regulate multiple life functions in insects. The circadian system located in the male reproductive tract of Lepidoptera is one of the best characterized peripheral oscillators in insects. Our previous research on the cotton leafworm, Spodoptera littoralis, demonstrated that this oscillator controls the rhythm of sperm release from the testis and coordinates sperm maturation in the upper vas deferens (UVD). We demonstrated previously that a protein that functions as yolk protein in females is also produced in cyst cells surrounding sperm bundles in the testis, and is released into the UVD. Here, we investigated the temporal expression of the yolk protein 2 (yp2) gene at the mRNA and protein level in the testis of S. littoralis, and inquired whether their expression is regulated by PER-based molecular oscillator. We describe a circadian rhythm of YP2 accumulation in the UVD seminal fluid, where this protein interacts with sperm in a circadian fashion. However, we also demonstrate that yp2 mRNA and YP2 protein levels within cyst cells show only a diurnal rhythm in light/dark (LD) cycles. These rhythms do not persist in constant darkness (DD), suggesting that they are non-circadian. Interestingly, the per gene mRNA and protein levels in cyst cells are rhythmic in LD but not in DD. Nevertheless, per appears to be involved in the diurnal timing of YP2 protein accumulation in cyst cells.
Collapse
Affiliation(s)
- Joanna Kotwica
- Department of Animal Physiology, Zoological Institute, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Urinary excretion of water and all major electrolytes exhibit robust circadian oscillations. The 24-h periodicity has been well documented for several important determinants of urine formation, including renal blood flow, glomerular filtration, tubular reabsorption, and tubular secretion. Disturbance of the renal circadian rhythms is increasingly recognized as a risk factor for hypertension, polyuria, and other diseases and may contribute to renal fibrosis. The origin of these rhythms has been attributed to the reactive response of the kidney to circadian changes in volume and/or in the composition of extracellular fluids that are entrained by rest/activity and feeding/fasting cycles. However, numerous studies have shown that most of the renal excretory rhythms persist for long periods of time, even in the absence of periodic environmental cues. These observations led to the hypothesis of the existence of a self-sustained mechanism, enabling the kidney to anticipate various predictable circadian challenges to homeostasis. The molecular basis of this mechanism remained unknown until the recent discovery of the mammalian circadian clock made of a system of autoregulatory transcriptional/translational feedback loops, which have been found in all tissues studied, including the kidney. Here, we present a review of the growing evidence showing the involvement of the molecular clock in the generation of renal excretory rhythms.
Collapse
Affiliation(s)
- Dmitri Firsov
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
16
|
Syrova Z, Sauman I, Giebultowicz JM. Effects of Light and Temperature on the Circadian System Controlling Sperm Release in MothSpodoptera littoralis. Chronobiol Int 2009; 20:809-21. [PMID: 14535355 DOI: 10.1081/cbi-120024217] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reproductive physiology of male moths is regulated by a peripheral circadian system, which controls the timing of sperm release from the testis into the upper vas deferens (UVD) and timing of sperm transfer from the UVD to the seminal vesicles. We investigated various effects of light and temperature on sperm release and transfer rhythms in the moth Spodoptera littoralis. We report that both rhythms persist for up to 1 week in constant darkness without significant dampening and are also temperature compensated in the range from 20 degrees C to 30 degrees C. However, the duration of sperm retention in the UVD is temperature-dependent; consequently, temperature exerts a masking effect on the rhythm of sperm transfer. Experimental manipulations of light and temperature regime demonstrated that light dominates over temperature in entraining the timing of sperm release and transfer. Nevertheless, temperature plays a critical role in the absence of light Zeitgeber. Sperm release and transfer are arrhythmic in constant light (LL); however, both rhythms are restored by temperature cycles.
Collapse
Affiliation(s)
- Zdenka Syrova
- Department of Entomology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
17
|
Bebas P, Goodall CP, Majewska M, Neumann A, Giebultowicz JM, Chappell PE. Circadian clock and output genes are rhythmically expressed in extratesticular ducts and accessory organs of mice. FASEB J 2008; 23:523-33. [PMID: 18945877 DOI: 10.1096/fj.08-113191] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Circadian clocks regulate multiple rhythms in mammalian tissues. In most organs core clock gene expression is oscillatory, with negative components Per and Cry peaking in antiphase to Bmal1. A notable exception is the testis, where clock genes seem nonrhythmic. Earlier mammalian studies, however, did not examine clock expression patterns in accessory ductal tissue required for sperm maturation and transport. Previous studies in insects demonstrated control of sperm maturation in vas deferens by a local circadian system. Sperm ducts express clock genes and display circadian pH changes controlled by vacuolar-type H(+)-ATPase and carbonic anhydrase (CA-II). It is unknown whether sperm-processing rhythms are conserved beyond insects. To address this question in mice housed in a light-dark environment, we examined temporal patterns of mPer1 and Bmal1 gene expression and protein abundance in epididymis, vas deferens, seminal vesicles, and prostate. Results demonstrate variable tissue-specific patterns of expression of the two genes, with variations in levels of clock proteins and their nucleo-cytoplasmic cycling observed among examined tissues. Strikingly, mPer1 and Bmal1 mRNA and proteins oscillate in antiphase in the prostate, with similar peak-trough patterns as observed in the suprachiasmatic nuclei, the brain's central clock. Genes encoding CA and a V-ATPase subunit, which are rhythmically expressed in sperm ducts of moths, are also rhythmic in some segments of murine sperm ducts. Our data suggest that some sperm duct segments may contain peripheral circadian systems whereas others may express clock genes in a pleiotropic manner.
Collapse
Affiliation(s)
- Piotr Bebas
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
18
|
Bebas P, Kotwica J, Joachimiak E, Giebultowicz JM. Yolk protein is expressed in the insect testis and interacts with sperm. BMC DEVELOPMENTAL BIOLOGY 2008; 8:64. [PMID: 18549506 PMCID: PMC2440742 DOI: 10.1186/1471-213x-8-64] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 06/13/2008] [Indexed: 12/02/2022]
Abstract
Background Male and female gametes follow diverse developmental pathways dictated by their distinct roles in fertilization. While oocytes of oviparous animals accumulate yolk in the cytoplasm, spermatozoa slough off most of their cytoplasm in the process of individualization. Mammalian spermatozoa released from the testis undergo extensive modifications in the seminal ducts involving a variety of glycoproteins. Ultrastructural studies suggest that glycoproteins are involved in sperm maturation in insects; however, their characterization at the molecular level is lacking. We reported previously that the circadian clock controls sperm release and maturation in several insect species. In the moth, Spodoptera littoralis, the secretion of glycoproteins into the seminal fluid occurs in a daily rhythmic pattern. The purpose of this study was to characterize seminal fluid glycoproteins in this species and elucidate their role in the process of sperm maturation. Results We collected seminal fluid proteins from males before and after daily sperm release. These samples were separated by 2-D gel electrophoresis, and gels were treated with a glycoprotein-detecting probe. We observed a group of abundant glycoproteins in the sample collected after sperm release, which was absent in the sample collected before sperm release. Sequencing of these glycoproteins by mass spectroscopy revealed peptides bearing homology with components of yolk, which is known to accumulate in developing oocytes. This unexpected result was confirmed by Western blotting demonstrating that seminal fluid contains protein immunoreactive to antibody against yolk protein YP2 produced in the follicle cells surrounding developing oocytes. We cloned the fragment of yp2 cDNA from S. littoralis and determined that it is expressed in both ovaries and testes. yp2 mRNA and YP2 protein were detected in the somatic cyst cells enveloping sperm inside the testis. During the period of sperm release, YP2 protein appears in the seminal fluid and forms an external coat on spermatozoa. Conclusion One of the yolk protein precursors YP2, which in females accumulate in the oocytes to provision developing embryos, appears to have a second male-specific role. It is produced in the testes and released into the seminal fluid where it interacts with sperm. These data reveal unexpected common factor in the maturation of insect eggs and sperm.
Collapse
Affiliation(s)
- Piotr Bebas
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | | | | |
Collapse
|
19
|
|
20
|
Pyza E, Borycz J, Giebultowicz JM, Meinertzhagen IA. Involvement of V-ATPase in the regulation of cell size in the fly's visual system. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:985-994. [PMID: 15607501 DOI: 10.1016/j.jinsphys.2004.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 08/06/2004] [Accepted: 08/06/2004] [Indexed: 05/24/2023]
Abstract
In the fly's visual system, two classes of lamina interneuron, L1 and L2, cyclically change both their size and shape in a rhythm that is circadian. Several neurotransmitters and the lamina's glial cells are known to be involved in regulating these rhythms. Moreover, vacuolar-type H+-ATPase (V-ATPase) in the optic lobe is thought also to participate in such regulation. We have detected V-ATPase-like immunoreactivity in the heads of both Drosophilla melanogaster and Musca domestica using antibodies raised against either the B- or H-subunits of V-ATPase from D. melanogaster or against the B-subunit from two other insect species Culex quinquefasciatus and Manduca sexta. In the visual systems of both fly species V-ATPase was localized immunocytochemically to the compound eye photoreceptors. In D. melanogaster immunoreactivity oscillated during the day and night and under constant darkness the signal was stronger during the subjective night than the subjective day. In turn, blocking V-ATPase by injecting a V-ATPase blocker, bafilomycin, in M. domestica increased the axon sizes of L1 and L2, but only when bafilomycin was applied during the night. As a result bafilomycin abolished the day/night difference in axon size in L1 and L2, their sizes being similar during the day and night.
Collapse
Affiliation(s)
- E Pyza
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland.
| | | | | | | |
Collapse
|
21
|
Hall JC. Genetics and molecular biology of rhythms in Drosophila and other insects. ADVANCES IN GENETICS 2003; 48:1-280. [PMID: 12593455 DOI: 10.1016/s0065-2660(03)48000-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Application of generic variants (Sections II-IV, VI, and IX) and molecular manipulations of rhythm-related genes (Sections V-X) have been used extensively to investigate features of insect chronobiology that might not have been experimentally accessible otherwise. Most such tests of mutants and molecular-genetic xperiments have been performed in Drosophila melanogaster. Results from applying visual-system variants have revealed that environmental inputs to the circadian clock in adult flies are mediated by external photoreceptive structures (Section II) and also by direct light reception chat occurs in certain brain neurons (Section IX). The relevant light-absorbing molecuLes are rhodopsins and "blue-receptive" cryptochrome (Sections II and IX). Variations in temperature are another clock input (Section IV), as has been analyzed in part by use of molecular techniques and transgenes involving factors functioning near the heart of the circadian clock (Section VIII). At that location within the fly's chronobiological system, approximately a half-dozen-perhaps up to as many as 10-clock genes encode functions that act and interact to form the circadian pacemaker (Sections III and V). This entity functions in part by transcriptional control of certain clock genes' expressions, which result in the production of key proteins that feed back negatively to regulate their own mRNA production. This occurs in part by interactions of such proteins with others that function as transcriptional activators (Section V). The implied feedback loop operates such that there are daily variations in the abundances of products put out by about one-half of the core clock genes. Thus, the normal expression of these genes defines circadian rhythms of their own, paralleling the effects of mutations at the corresponding genetic loci (Section III), which are to disrupt or apparently eliminate clock functioning. The fluctuations in the abundance of gene products are controlled transciptionally and posttranscriptionally. These clock mechanisms are being analyzed in ways that are increasingly complex and occasionally obscure; not all panels of this picture are comprehensive or clear, including problems revolving round the biological meaning or a given features of all this molecular cycling (Section V). Among the complexities and puzzles that have recently arisen, phenomena that stand out are posttranslational modifications of certain proteins that are circadianly regulated and regulating; these biochemical events form an ancillary component of the clock mechanism, as revealed in part by genetic identification of Factors (Section III) that turned out to encode protein kinases whose substrates include other pacemaking polypeptides (Section V). Outputs from insect circadian clocks have been long defined on formalistic and in some cases concrete criteria, related to revealed rhythms such as periodic eclosion and daily fluctuations of locomotion (Sections II and III). Based on the reasoning that if clock genes can regulate circadian cyclings of their own products, they can do the same for genes that function along output pathways; thus clock-regulated genes have been identified in part by virtue of their products' oscillations (Section X). Those studied most intensively have their expression influenced by circadian-pacemaker mutations. The clock-regulated genes discovered on molecular criteria have in some instances been analyzed further in their mutant forms and found to affect certain features of overt whole-organismal rhythmicity (Sections IV and X). Insect chronogenetics touches in part on naturally occurring gene variations that affect biological rhythmicity or (in some cases) have otherwise informed investigators about certain features of the organism's rhythm system (Section VII). Such animals include at least a dozen insect species other than D. melanogaster in which rhythm variants have been encountered (although usually not looked for systematically). The chronobiological "system" in the fruit fly might better be graced with a plural appellation because there is a myriad of temporally related phenomena that have come under the sway of one kind of putative rhythm variant or the other (Section IV). These phenotypes, which range well beyond the bedrock eclosion and locomotor circadian rhythms, unfortunately lead to the creation of a laundry list of underanalyzed or occult phenomena that may or may not be inherently real, whether or not they might be meaningfully defective under the influence of a given chronogenetic variant. However, such mutants seem to lend themselves to the interrogation of a wide variety of time-based attributes-those that fall within the experimental confines of conventionally appreciated circadian rhythms (Sections II, III, VI, and X); and others that consist of 24-hr or nondaily cycles defined by many kinds of biological, physiological, or biochemical parameters (Section IV).
Collapse
Affiliation(s)
- Jeffrey C Hall
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
22
|
Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R, Giebultowicz JM. Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc Natl Acad Sci U S A 2002; 99:2134-9. [PMID: 11854509 PMCID: PMC122331 DOI: 10.1073/pnas.032426699] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2001] [Indexed: 11/18/2022] Open
Abstract
Circadian coordination of life functions is believed to contribute to an organism's fitness; however, such contributions have not been convincingly demonstrated in any animal. The most significant measure of fitness is the reproductive output of the individual and species. Here we examined the consequences of loss of clock function on reproductive fitness in Drosophila melanogaster with mutated period (per(0)), timeless (tim(0)), cycle (cyc(0)), and Clock (Clk(Jrk)) genes. Single mating among couples with clock-deficient phenotypes resulted in approximately 40% fewer progeny compared with wild-type flies, because of a decreased number of eggs laid and a greater rate of unfertilized eggs. Male contribution to this phenotype was demonstrated by a decrease in reproductive capacity among per(0) and tim(0) males mated with wild-type females. The important role of clock genes for reproductive fitness was confirmed by reversal of the low-fertility phenotype in flies with rescued per or tim function. Males lacking a functional clock showed a significant decline in the quantity of sperm released from the testes to seminal vesicles, and these tissues displayed rhythmic and autonomous expression of clock genes. By combining molecular and physiological approaches, we identified a circadian clock in the reproductive system and defined its role in the sperm release that promotes reproductive fitness in D. melanogaster.
Collapse
Affiliation(s)
- L M Beaver
- Department of Entomology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|