1
|
Tinline-Goodfellow CT, Lees MJ, Hodson N. The skeletal muscle fiber periphery: A nexus of mTOR-related anabolism. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 5:10-19. [PMID: 36994172 PMCID: PMC10040390 DOI: 10.1016/j.smhs.2022.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscle anabolism is driven by numerous stimuli such as growth factors, nutrients (i.e., amino acids, glucose), and mechanical stress. These stimuli are integrated by the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signal transduction cascade. In recent years, work from our laboratory and elsewhere has sought to unravel the molecular mechanisms underpinning the mTOR-related activation of muscle protein synthesis (MPS), as well as the spatial regulation of these mechanisms within the skeletal muscle cell. These studies have suggested that the skeletal muscle fiber periphery is a region of central importance in anabolism (i.e., growth/MPS). Indeed, the fiber periphery is replete with the substrates, molecular machinery, and translational apparatus necessary to facilitate MPS. This review provides a summary of the mechanisms underpinning the mTOR-associated activation of MPS from cell, rodent, and human studies. It also presents an overview of the spatial regulation of mTORC1 in response to anabolic stimuli and outlines the factors that distinguish the periphery of the cell as a highly notable region of skeletal muscle for the induction of MPS. Future research should seek to further explore the nutrient-induced activation of mTORC1 at the periphery of skeletal muscle fibers.
Collapse
Affiliation(s)
| | - Matthew J. Lees
- Faculty of Kinesiology and Physical Education, University of Toronto, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Canada
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Corresponding author. Faculty of Kinesiology and Physical Education, University of Toronto, Canada.
| |
Collapse
|
2
|
Ferrié C, Kasper S, Wanivenhaus F, Flück M. Focal adhesion kinase coordinates costamere-related JNK signaling with muscle fiber transformation after Achilles tenotomy and tendon reconstruction. Exp Mol Pathol 2019; 108:42-56. [PMID: 30879953 DOI: 10.1016/j.yexmp.2019.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/29/2019] [Accepted: 03/12/2019] [Indexed: 01/24/2023]
Abstract
Achilles tendon rupture necessitates rapid tendon reattachment to reinstate plantar flexion before affected muscles deteriorate through muscle fiber atrophy and transformation. The implicated process may involve alterations in sarcolemmal sites of myofibril attachment (costameres), which control myofibrillogenesis via a mechano-regulated mechanism through integrin-associated focal adhesion kinase (FAK). We assessed the contribution of FAK to alterations in fiber type composition and expression of costamere-associated structural proteins, the phosphorylation status of Y397-FAK and downstream mTOR/JNK-P70S6K hypertrophy signaling in rat soleus muscle after Achilles tenotomy and tendon repair. Achilles tenotomy induced a profound deterioration of muscle composition 14 days, but not 4 days, following tendon release, comprising specifically increased area percentages of fast type fibers, fibers with internal nuclei, and connective tissue. Concomitantly, expression of costameric proteins FAK and meta-vinculin, and phosphorylation of T421/S424-P70S6K and T183/Y185-JNK was elevated, all of which was mitigated by tendon reattachment immediately after release. Overexpression of FAK in soleus muscle fibers and reattachment corrected the expression of meta- and gamma-vinculin isoforms to the lower levels in mock controls while further enhancing T183/Y185-JNK phosphorylation and levels of FAK C-terminus-related inhibitory proteins. Co-overexpression of the FAK inhibitor, FRNK, lowered FAK-overexpression driven Y397-FAK phosphorylation and T183/Y185-JNK phosphorylation. FAK levels correlated to molecular and cellular hallmarks of fiber degeneration. The findings demarcate the window between 4 and 14 days after tenotomy as costamere-dependent muscle transformation process, and expose that FAK overexpression prevents molecular aspects of the pathology which within the study limitations does not result in the mitigation of muscle fiber degeneration.250 words.
Collapse
Affiliation(s)
- Céline Ferrié
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Stephanie Kasper
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Florian Wanivenhaus
- Department of Orthopedic Surgery, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland.
| |
Collapse
|
3
|
Flück M, Viecelli C, Bapst AM, Kasper S, Valdivieso P, Franchi MV, Ruoss S, Lüthi JM, Bühler M, Claassen H, Hoppeler H, Gerber C. Knee Extensors Muscle Plasticity Over a 5-Years Rehabilitation Process After Open Knee Surgery. Front Physiol 2018; 9:1343. [PMID: 30337877 PMCID: PMC6178139 DOI: 10.3389/fphys.2018.01343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/06/2018] [Indexed: 01/26/2023] Open
Abstract
We investigated molecular and cellular parameters which set metabolic and mechanical functioning of knee extensor muscles in the operated and contralateral control leg of 9 patients with a chronically insufficient anterior cruciate ligament (ACL; 26.6 ± 8.3 years, 8 males, 1 female) after open reconstructive surgery (week 0), after ambulant physiotherapy under cast immobilization (week 9), succeeding rehabilitation training (up to week 26), and subsequent voluntary physical activity (week 260). Clinical indices of knee function in the operated leg were improved at 52 weeks and remained at a comparable level at week 260. CSA of the quadriceps (-18%), MCSA of muscle fibers (-24%), and capillary-to-fiber ratio (-24%) in m. vastus lateralis from the ACL insufficient leg were lower at week 0 than reference values in the contralateral leg at week 260. Slow type fiber percentage (-35%) and mitochondrial volume density (-39%) were reduced in m. vastus lateralis from the operated leg at weeks 9 and 26. Composition alterations in the operated leg exceeded those in the contralateral leg and, with the exception of the volume density of subsarcolemmal mitochondria, returned to the reference levels at week 260. Leg-specific deterioration of metabolic characteristics in the vasti from the operated leg was reflected by the down-regulation of mitochondrial respiration complex I-III markers (-41-57%) at week 9. After rehabilitation training at week 26, the specific Y397 phosphorylation of focal adhesion kinase (FAK), which is a proxy for mechano-regulation, was elevated by 71% in the operated leg but not in the contralateral leg, which had performed strengthening type exercise during ambulant physiotherapy. Total FAK protein and Y397 phosphorylation levels were lowered in both legs at week 26 resulting in positive correlations with mitochondrial volume densities and mitochondrial protein levels. The findings emphasize that a loss of mechanical and metabolic characteristics in knee extensor muscle remains detectable years after untreated ACL rupture, which may be aggravated in the post-operative phase by the deterioration of slow-oxidative characteristics after reconstruction due to insufficient load-bearing muscle activity. The reestablishment of muscle composition subsequent to years of voluntary physical activity reinforces that slow-to-fast fiber transformation is reversible in humans.
Collapse
Affiliation(s)
- Martin Flück
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Claudio Viecelli
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Andreas M Bapst
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Stephanie Kasper
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paola Valdivieso
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Martino V Franchi
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Severin Ruoss
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jean-Marc Lüthi
- Department of Orthopedic Surgery, Inselspital Bern, Bern, Switzerland
| | - Martin Bühler
- Department of Orthopedic Surgery, Inselspital Bern, Bern, Switzerland
| | | | - Hans Hoppeler
- Department of Anatomy, University of Bern, Bern, Switzerland
| | - Christian Gerber
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Orthopedic Surgery, Inselspital Bern, Bern, Switzerland
| |
Collapse
|
4
|
Rittweger J, Albracht K, Flück M, Ruoss S, Brocca L, Longa E, Moriggi M, Seynnes O, Di Giulio I, Tenori L, Vignoli A, Capri M, Gelfi C, Luchinat C, Francheschi C, Bottinelli R, Cerretelli P, Narici M. Sarcolab pilot study into skeletal muscle's adaptation to long-term spaceflight. NPJ Microgravity 2018; 4:18. [PMID: 30246141 PMCID: PMC6141586 DOI: 10.1038/s41526-018-0052-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Spaceflight causes muscle wasting. The Sarcolab pilot study investigated two astronauts with regards to plantar flexor muscle size, architecture, and function, and to the underlying molecular adaptations in order to further the understanding of muscular responses to spaceflight and exercise countermeasures. Two crew members (A and B) spent 6 months in space. Crew member A trained less vigorously than B. Postflight, A showed substantial decrements in plantar flexor volume, muscle architecture, in strength and in fiber contractility, which was strongly mitigated in B. The difference between these crew members closely reflected FAK-Y397 abundance, a molecular marker of muscle's loading history. Moreover, crew member A showed downregulation of contractile proteins and enzymes of anaerobic metabolism, as well as of systemic markers of energy and protein metabolism. However, both crew members exhibited decrements in muscular aerobic metabolism and phosphate high energy transfer. We conclude that countermeasures can be effective, particularly when resistive forces are of sufficient magnitude. However, to fully prevent space-related muscular deterioration, intersubject variability must be understood, and intensive exercise countermeasures programs seem mandatory. Finally, proteomic and metabolomic analyses suggest that exercise benefits in space may go beyond mere maintenance of muscle mass, but rather extend to the level of organismic metabolism.
Collapse
Affiliation(s)
- Jörn Rittweger
- 1Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,2Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Kirsten Albracht
- 3Faculty of Medical Engineering and Technomathematics, FH Aachen University of Applied Science Aachen, Aachen, Germany.,4Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
| | - Martin Flück
- 5Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Severin Ruoss
- 5Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Lorenza Brocca
- 6Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Emanuela Longa
- 6Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Olivier Seynnes
- 8Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Irene Di Giulio
- 9Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Leonardo Tenori
- 10Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessia Vignoli
- CERM Centro di Ricerca di Risonanze Magnetiche, Florence, Italy
| | - Miriam Capri
- 12Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cecilia Gelfi
- 13Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | | | - Claudio Francheschi
- 12Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Roberto Bottinelli
- 6Department of Molecular Medicine, University of Pavia, Pavia, Italy.,14Fondazione Salvatore Maugeri (IRCSS), Scientific Institute of Pavia, Pavia, Italy
| | | | - Marco Narici
- 15Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Mirzoev TM, Tyganov SA, Petrova IO, Shenkman BS. The realization of a mechanical signal during gravitational unloading: The response of mTORC1 targets to eccentric contractions. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916050213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns. Sci Rep 2016; 6:24627. [PMID: 27090740 PMCID: PMC4835794 DOI: 10.1038/srep24627] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/31/2016] [Indexed: 01/05/2023] Open
Abstract
When faced with adverse environmental conditions, the marsupial Dromiciops gliroides uses either daily or seasonal torpor to support survival and is the only known hibernating mammal in South America. As the sole living representative of the ancient Order Microbiotheria, this species can provide crucial information about the evolutionary origins and biochemical mechanisms of hibernation. Hibernation is a complex energy-saving strategy that involves changes in gene expression that are elicited in part by microRNAs. To better elucidate the role of microRNAs in orchestrating hypometabolism, a modified stem-loop technique and quantitative PCR were used to characterize the relative expression levels of 85 microRNAs in liver and skeletal muscle of control and torpid D. gliroides. Thirty-nine microRNAs were differentially regulated during torpor; of these, 35 were downregulated in liver and 11 were differentially expressed in skeletal muscle. Bioinformatic analysis predicted that the downregulated liver microRNAs were associated with activation of MAPK, PI3K-Akt and mTOR pathways, suggesting their importance in facilitating marsupial torpor. In skeletal muscle, hibernation-responsive microRNAs were predicted to regulate focal adhesion, ErbB, and mTOR pathways, indicating a promotion of muscle maintenance mechanisms. These tissue-specific responses suggest that microRNAs regulate key molecular pathways that facilitate hibernation, thermoregulation, and prevention of muscle disuse atrophy.
Collapse
|
7
|
Graham ZA, Qin W, Harlow LC, Ross NH, Bauman WA, Gallagher PM, Cardozo CP. Focal adhesion kinase signaling is decreased 56 days following spinal cord injury in rat gastrocnemius. Spinal Cord 2015; 54:502-9. [PMID: 26481700 DOI: 10.1038/sc.2015.183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/21/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022]
Abstract
STUDY DESIGN Descriptive study. OBJECTIVES The goal of this study was to determine the effects of spinal cord injury (SCI) on aspects of the focal adhesion kinase (FAK) signaling pathway 56 days post injury in rat gastrocnemius. SETTING This study was conducted in Bronx, NY, USA. METHODS Three-month-old male Wistar rats were exposed to either a sham surgery (n=10) or complete T4 spinal cord transection (n=10). Rats were killed 56 days following surgery and the muscle was collected. Following homogenization, proteins of the FAK pathway were analyzed by western immunoblotting or reverse transcription-qPCR. In addition, cellular markers for proteins that target the degradation of FAK were investigated. RESULTS SCI resulted in significantly lower levels of total and phosphorylated FAK, cSrc and p70S6k, and a trend for increased FRNK protein expression. SCI did not change levels of the α7 or β1 integrin subunits, total or phosphorylated ERK1/2, phosphorylated Akt and TSC2 or total p70S6k. SCI resulted in a greater expression of total Akt. mRNA expression of FAK and the α7 or β1 integrins remained unchanged between sham and SCI groups. Caspase-3/7 activity and Trim72 mRNA and protein expression remained unchanged following SCI. CONCLUSION SCI results in diminished FAK signaling and is independent of ERK1/2 and Akt. SCI has no effect on mRNA levels for genes encoding components of the focal adhesion 56 days after injury.
Collapse
Affiliation(s)
- Z A Graham
- James J. Peters Veterans Affairs Medical Center, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Qin
- James J. Peters Veterans Affairs Medical Center, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L C Harlow
- James J. Peters Veterans Affairs Medical Center, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, Bronx, NY, USA
| | - N H Ross
- James J. Peters Veterans Affairs Medical Center, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, Bronx, NY, USA
| | - W A Bauman
- James J. Peters Veterans Affairs Medical Center, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P M Gallagher
- Applied Physiology Laboratory, University of Kansas, Lawrence, KS, USA
| | - C P Cardozo
- James J. Peters Veterans Affairs Medical Center, National Center of Excellence for the Medical Consequences of Spinal Cord Injury, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Graham ZA, Gallagher PM, Cardozo CP. Focal adhesion kinase and its role in skeletal muscle. J Muscle Res Cell Motil 2015; 36:305-15. [PMID: 26142360 PMCID: PMC4659753 DOI: 10.1007/s10974-015-9415-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth pathways. Changes in FAK expression and phosphorylation have been found to correlate to specific developmental states in myoblast differentiation, muscle fiber formation and muscle size in response to loading and unloading. With the capability to regulate costamere formation, hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important in regulating muscle cell health.
Collapse
Affiliation(s)
- Zachary A Graham
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 W. Kingsbridge Rd., Bronx, NY, 10468, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Christopher P Cardozo
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 W. Kingsbridge Rd., Bronx, NY, 10468, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Abstract
Muscle fibres are very specialised cells with a complex structure that requires a high level of organisation of the constituent proteins. For muscle contraction to function properly, there is a need for not only sarcomeres, the contractile structures of the muscle fibre, but also costameres. These are supramolecular structures associated with the sarcolemma that allow muscle adhesion to the extracellular matrix. They are composed of protein complexes that interact and whose functions include maintaining cell structure and signal transduction mediated by their constituent proteins. It is important to improve our understanding of these structures, as mutations in various genes that code for costamere proteins cause many types of muscular dystrophy. In this review, we provide a description of costameres detailing each of their constituent proteins, such as dystrophin, dystrobrevin, syntrophin, sarcoglycans, dystroglycans, vinculin, talin, integrins, desmin, plectin, etc. We describe as well the diseases associated with deficiency thereof, providing a general overview of their importance.
Collapse
|
10
|
Graham ZA, Touchberry CD, Gupte AA, Bomhoff GL, Geiger PC, Gallagher PM. Changes in α7β1 integrin signaling after eccentric exercise in heat-shocked rat soleus. Muscle Nerve 2015; 51:562-8. [PMID: 24956997 DOI: 10.1002/mus.24324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 12/16/2022]
Abstract
INTRODUCTION α7β1 integrin links the extracellular matrix to the focal adhesion (FA) in skeletal muscle and serves as a stabilizing and signal relayer. Heat shock (HS) induces expression of proteins that interact with the FA. METHODS Male Wistar rats were assigned to 1 of 3 groups: control (CON); eccentric exercise (EE); or EE+HS (HS). Soleus muscle was analyzed at 2 h and 48 h post-exercise. RESULTS The 120-kDa α7 integrin decreased in the EE and HS groups, and the 70-kDa peptide decreased in the EE group at 2 h post-exercise. Total expression of focal adhesion kinase (FAK) and RhoA were decreased in EE and HS at 2 h post-exercise. Expression of phosphorylated FAK(397) decreased in the EE group but not the HS group at 2 h post-exercise. CONCLUSIONS Long-duration EE may cause alterations in the FA in rat soleus muscle through the α7 integrin subunit and FAK.
Collapse
Affiliation(s)
- Zachary A Graham
- Applied Physiology Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, 101DJ Robinson Center, 1301 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | | | | | | | | | | |
Collapse
|
11
|
De Palma S, Capitanio D, Vasso M, Braghetta P, Scotton C, Bonaldo P, Lochmüller H, Muntoni F, Ferlini A, Gelfi C. Muscle Proteomics Reveals Novel Insights into the Pathophysiological Mechanisms of Collagen VI Myopathies. J Proteome Res 2014; 13:5022-30. [DOI: 10.1021/pr500675e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sara De Palma
- Department
of Biomedical Sciences for Health, University of Milan, Segrate, Milan 20090, Italy
- Institute
of Bioimaging and Molecular Physiology, National Research Council, Cefalù
90015 − Segrate 20090, Italy
| | - Daniele Capitanio
- Department
of Biomedical Sciences for Health, University of Milan, Segrate, Milan 20090, Italy
- IRCCS Policlinico
San Donato, San Donato Milanese, Milan 20097, Italy
| | - Michele Vasso
- Institute
of Bioimaging and Molecular Physiology, National Research Council, Cefalù
90015 − Segrate 20090, Italy
| | - Paola Braghetta
- Department
of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Chiara Scotton
- Department
of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Paolo Bonaldo
- Department
of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Newcastle University, Centre
for Neuromuscular Diseases, Newcastle
upon Tyne NE1 3BZ, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Institute of
Child Health, London WC1N 1EH, United Kingdom
| | - Alessandra Ferlini
- Department
of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Cecilia Gelfi
- Department
of Biomedical Sciences for Health, University of Milan, Segrate, Milan 20090, Italy
- Institute
of Bioimaging and Molecular Physiology, National Research Council, Cefalù
90015 − Segrate 20090, Italy
- IRCCS Policlinico
San Donato, San Donato Milanese, Milan 20097, Italy
| |
Collapse
|
12
|
Early changes in costameric and mitochondrial protein expression with unloading are muscle specific. BIOMED RESEARCH INTERNATIONAL 2014; 2014:519310. [PMID: 25313365 PMCID: PMC4182083 DOI: 10.1155/2014/519310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/23/2014] [Indexed: 11/25/2022]
Abstract
We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P < 0.10). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (−23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading.
Collapse
|
13
|
Salanova M, Gelfi C, Moriggi M, Vasso M, Viganò A, Minafra L, Bonifacio G, Schiffl G, Gutsmann M, Felsenberg D, Cerretelli P, Blottner D. Disuse deterioration of human skeletal muscle challenged by resistive exercise superimposed with vibration: evidence from structural and proteomic analysis. FASEB J 2014; 28:4748-63. [PMID: 25122557 DOI: 10.1096/fj.14-252825] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present bed rest (BR) study, 23 volunteers were randomized into 3 subgroups: 60 d BR control (Ctr); BR with resistive exercise (RE; lower-limb load); and resistive vibration exercise (RVE; RE with superimposed vibration). The aim was to analyze by confocal and electron microscopy the effects of vibration on myofibril and filament integrity in soleus (Sol) and vastus lateralis (VL) muscle; differential proteomics of contractile, cytoskeletal, and costameric proteins (TN-C, ROCK1, and FAK); and expression of PGC1α and atrophy-related master genes MuRF1 and MuRF2. RVE (but not RE) preserved myofiber size and phenotype in Sol and VL by overexpressing MYBPC1 (42%, P ≤ 0.01), WDR1 (39%, P ≤ 0.01), sarcosin (84%, P ≤ 0.01), and CKM (20%, P ≤ 0.01) and prevented myofibrillar ultrastructural damage as detectable by MuRF1 expression. In Sol, cytoskeletal and contractile proteins were normalized by RVE, and TN-C increased (59%, P ≤ 0.01); the latter also with RE (108%, P ≤ 0.01). In VL, the outcomes of both RVE (acting on sarcosin and desmin) and RE (by way of troponinT-slow and MYL2) were similar. RVE appears to be a highly efficient countermeasure protocol against muscle atrophy and ultrastructural and molecular dysregulation induced by chronic disuse.
Collapse
Affiliation(s)
- Michele Salanova
- Center of Space Medicine Berlin, Neuromuscular Group, Institute of Anatomy, and
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Consiglio Nazionale delle Ricerche (CNR), Institute of Bioimaging and Molecular Physiology, Segrate, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, San Donato Milanese, Italy;
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Michele Vasso
- Consiglio Nazionale delle Ricerche (CNR), Institute of Bioimaging and Molecular Physiology, Segrate, Italy; Institute of Bioimaging and Molecular Physiology, CNR-Laboratorio di Tecnologie Oncologiche (LATO), Cefalù, Italy; and
| | - Agnese Viganò
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Luigi Minafra
- Institute of Bioimaging and Molecular Physiology, CNR-Laboratorio di Tecnologie Oncologiche (LATO), Cefalù, Italy; and
| | - Gaetano Bonifacio
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Gudrun Schiffl
- Center of Space Medicine Berlin, Neuromuscular Group, Institute of Anatomy, and
| | - Martina Gutsmann
- Center of Space Medicine Berlin, Neuromuscular Group, Institute of Anatomy, and
| | - Dieter Felsenberg
- Center for Muscle and Bone Research (ZMK), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Paolo Cerretelli
- Consiglio Nazionale delle Ricerche (CNR), Institute of Bioimaging and Molecular Physiology, Segrate, Italy
| | - Dieter Blottner
- Center of Space Medicine Berlin, Neuromuscular Group, Institute of Anatomy, and
| |
Collapse
|
14
|
Gehlert S, Suhr F, Gutsche K, Willkomm L, Kern J, Jacko D, Knicker A, Schiffer T, Wackerhage H, Bloch W. High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension. Pflugers Arch 2014; 467:1343-56. [PMID: 25070178 DOI: 10.1007/s00424-014-1579-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
How force development and time under tension (TUT) during resistance exercise (RE) influence anabolic signalling of skeletal muscle is incompletely understood. We hypothesized that high force development during RE is more important for post-exercise-induced signalling than submaximal and fatiguing RE with lower force development but similar TUT. Twenty-two male subjects (24 ± 6 years, 181 ± 9 cm, 79 ± 2 kg) performed three distinct RE modes in the fed state with equal TUT but distinct force output: (i) maximal eccentric RE (ECC, n = 7) three sets, eight reps, 100% eccentric dynamic force; (ii) standard RE (STD, n = 7), three sets, 10 reps, 75% dynamic force; and (iii) high fatiguing single-set RE (HIT, n = 8), 20 reps, 100% eccentric-concentric force; vastus lateralis biopsies were collected at baseline, 15, 30, 60, 240 min and 24 h after RE, and the signalling of mechanosensitive and mammalian target of rapamycin (mTOR)-related proteins was determined. The phosphorylation levels of pFAK(Tyr397), pJNK(Thr183/Tyr185), pAKT(Thr308/Ser473), pmTOR(Ser2448), p4E-BP1(Thr37/46), p70s6k(Thr389)/(Ser421/Thr424) and pS6(Ser235/236) were significantly higher in ECC than those in STD and HIT at several time points (P < 0.01). pJNK(Thr183/Tyr185) and pS6(Ser235/236) levels were significantly higher in type II myofibres in ECC compared with STD and HIT. HIT exerted throughout the weakest signalling response. We conclude that high force development during acute RE is superior for anabolic skeletal muscle signalling than fatiguing RE with lower force output but similar TUT. Our results suggest that this response is substantially driven by the higher activation of type II myofibres during RE.
Collapse
Affiliation(s)
- Sebastian Gehlert
- Institute of Cardiology and Sports Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Paxillin and focal adhesion kinase colocalise in human skeletal muscle and its associated microvasculature. Histochem Cell Biol 2014; 142:245-56. [PMID: 24671495 DOI: 10.1007/s00418-014-1212-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/15/2023]
Abstract
Focal adhesion kinase (FAK) and paxillin are functionally linked hormonal- and mechano-sensitive proteins. We aimed to describe paxillin's subcellular distribution using widefield and confocal immunofluorescence microscopy and test the hypothesis that FAK and paxillin colocalise in human skeletal muscle and its associated microvasculature. Percutaneous muscle biopsies were collected from the m. vastus lateralis of seven healthy males, and 5-μm cryosections were stained with anti-paxillin co-incubated with anti-dystrophin to identify the sarcolemma, anti-myosin heavy chain type I for fibre-type differentiation, anti-dihydropyridine receptor to identify T-tubules, lectin UEA-I to identify the endothelium of microvessels and anti-α-smooth muscle actin to identify vascular smooth muscle cells (VSMC). Colocalisation of anti-paxillin with anti-dystrophin or anti-FAK was quantified using Pearson's correlation coefficient on confocal microscopy images. Paxillin was primarily present in (sub)sarcolemmal regions of skeletal muscle fibres where it colocalised with dystrophin (r = 0.414 ± 0.026). The (sub)sarcolemmal paxillin immunofluorescence intensity was ~2.4-fold higher than in sarcoplasmic regions (P < 0.001) with sarcoplasmic paxillin immunofluorescence intensity ~10 % higher in type I than in type II fibres (P < 0.01). In some longitudinally orientated fibres, paxillin formed striations that corresponded to the I-band region. Paxillin immunostaining was highest in endothelial and VSMC and distributed heterogeneously in both cell types. FAK and paxillin colocalised at (sub)sarcolemmal regions and within the microvasculature (r = 0.367 ± 0.036). The first images of paxillin in human skeletal muscle suggest paxillin is present in (sub)sarcolemmal and I-band regions of muscle fibres and within the microvascular endothelium and VSMC. Colocalisation of FAK and paxillin supports their suggested role in hormonal and mechano-sensitive signalling.
Collapse
|
16
|
Nguyen N, Yi JS, Park H, Lee JS, Ko YG. Mitsugumin 53 (MG53) ligase ubiquitinates focal adhesion kinase during skeletal myogenesis. J Biol Chem 2013; 289:3209-16. [PMID: 24344130 DOI: 10.1074/jbc.m113.525154] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The striated muscle-specific mitsugumin 53 (MG53) is a novel E3 ligase that induces the ubiquitination of insulin receptor substrate 1 (IRS-1) during skeletal myogenesis, negatively regulating insulin-like growth factor and insulin signaling. Here we show that focal adhesion kinase (FAK) is the second target of MG53 during skeletal myogenesis. The FAK protein level gradually decreased, whereas its mRNA level was constant during myogenesis in C2C12 cells and MyoD-overexpressing mouse embryonic fibroblasts. The FAK protein was associated with the E2 enzyme UBE2H and the E3 enzyme MG53 in endogenous and exogenous immunoprecipitation experiments. FAK ubiquitination and degradation was induced by MG53 overexpression in myoblasts but abolished by MG53 or UBE2H knockdown in myotubes. Because RING-disrupted MG53 mutants (C14A and ΔR) did not induce FAK ubiquitination and degradation, the RING domain was determined to be required for MG53-induced FAK ubiquitination. Taken together, these data indicate that MG53 induces FAK ubiquitination with the aid of UBE2H during skeletal myogenesis.
Collapse
Affiliation(s)
- Nga Nguyen
- From the Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | | | | | | | | |
Collapse
|
17
|
Li R, Narici MV, Erskine RM, Seynnes OR, Rittweger J, Pišot R, Šimunič B, Flück M. Costamere remodeling with muscle loading and unloading in healthy young men. J Anat 2013; 223:525-36. [PMID: 24010829 PMCID: PMC3916893 DOI: 10.1111/joa.12101] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 11/28/2022] Open
Abstract
Costameres are mechano-sensory sites of focal adhesion in the sarcolemma that provide a structural anchor for myofibrils. Their turnover is regulated by integrin-associated focal adhesion kinase (FAK). We hypothesized that changes in content of costamere components (beta 1 integrin, FAK, meta-vinculin, gamma-vinculin) with increased and reduced loading of human anti-gravity muscle would: (i) relate to changes in muscle size and molecular parameters of muscle size regulation [p70S6K, myosin heavy chain (MHC)1 and MHCIIA]; (ii) correspond to adjustments in activity and expression of FAK, and its negative regulator, FRNK; and (iii) reflect the temporal response to reduced and increased loading. Unloading induced a progressive decline in thickness of human vastus lateralis muscle after 8 and 34 days of bedrest (−4% and −14%, respectively; n = 9), contrasting the increase in muscle thickness after 10 and 27 days of resistance training (+5% and +13%; n = 6). Changes in muscle thickness were correlated with changes in cross-sectional area of type I muscle fibers (r = 0.66) and beta 1 integrin content (r = 0.76) at the mid-point of altered loading. Changes in meta-vinculin and FAK-pY397 content were correlated (r = 0.85) and differed, together with the changes of beta 1 integrin, MHCI, MHCII and p70S6K, between the mid- and end-point of resistance training. By contrast, costamere protein level changes did not differ between time points of bedrest. The findings emphasize the role of FAK-regulated costamere turnover in the load-dependent addition and removal of myofibrils, and argue for two phases of muscle remodeling with resistance training, which do not manifest at the macroscopic level.
Collapse
Affiliation(s)
- Ruowei Li
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Klossner S, Li R, Ruoss S, Durieux AC, Flück M. Quantitative changes in focal adhesion kinase and its inhibitor, FRNK, drive load-dependent expression of costamere components. Am J Physiol Regul Integr Comp Physiol 2013; 305:R647-57. [PMID: 23904105 DOI: 10.1152/ajpregu.00007.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Costameres are mechanosensory sites of focal adhesion in the sarcolemma that reinforce the muscle-fiber composite and provide an anchor for myofibrillogenesis. We hypothesized that elevated content of the integrin-associated regulator of costamere turnover in culture, focal adhesion kinase (FAK), drives changes in costamere component content in antigravity muscle in a load-dependent way in correspondence with altered muscle weight. The content of FAK in soleus muscle being phosphorylated at autoregulatory tyrosine 397 (FAK-pY397) was increased after 20 s of stretch. FAK-pY397 content remained elevated after 24 h of stretch-overload due to upregulated FAK content. Overexpression of FAK in soleus muscle fibers by means of gene electrotransfer increased the β1-integrin (+56%) and meta-vinculin (+88%) content. α7-Integrin (P = 0.46) and γ-vinculin (P = 0.18) content was not altered after FAK overexpression. Co-overexpression of the FAK inhibitor FAK-related nonkinase (FRNK) reduced FAK-pY397 content by 33% and increased the percentage of fast-type fibers that arose in connection with hybrid fibers with gene transfer. Transplantation experiments confirmed the association of FRNK expression with slow-to-fast fiber transformation. Seven days of unloading blunted the elevation of FAK-pY397, β1-integrin, and meta-vinculin content with FAK overexpression, and this was reversed by 1 day of reloading. The results highlight that the expression of components for costameric attachment sites of myofibrils is under load- and fiber type-related control via FAK and its inhibitor FRNK.
Collapse
|
19
|
De Palma S, Leone R, Grumati P, Vasso M, Polishchuk R, Capitanio D, Braghetta P, Bernardi P, Bonaldo P, Gelfi C. Changes in muscle cell metabolism and mechanotransduction are associated with myopathic phenotype in a mouse model of collagen VI deficiency. PLoS One 2013; 8:e56716. [PMID: 23437220 PMCID: PMC3577731 DOI: 10.1371/journal.pone.0056716] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/14/2013] [Indexed: 02/06/2023] Open
Abstract
This study identifies metabolic and protein phenotypic alterations in gastrocnemius, tibialis anterior and diaphragm muscles of Col6a1−/− mice, a model of human collagen VI myopathies. All three muscles of Col6a1−/− mice show some common changes in proteins involved in metabolism, resulting in decreased glycolysis and in changes of the TCA cycle fluxes. These changes lead to a different fate of α-ketoglutarate, with production of anabolic substrates in gastrocnemius and tibialis anterior, and with lipotoxicity in diaphragm. The metabolic changes are associated with changes of proteins involved in mechanotransduction at the myotendineous junction/costameric/sarcomeric level (TN-C, FAK, ROCK1, troponin I fast) and in energy metabolism (aldolase, enolase 3, triose phosphate isomerase, creatine kinase, adenylate kinase 1, parvalbumin, IDH1 and FASN). Together, these change may explain Ca2+ deregulation, impaired force development, increased muscle-relaxation-time and fiber damage found in the mouse model as well as in patients. The severity of these changes differs in the three muscles (gastrocnemius<tibialis anterior<diaphragm) and correlates to the mass-to-tendon (myotendineous junction) ratio and to muscle morphology.
Collapse
Affiliation(s)
- Sara De Palma
- Department of Biomedical Sciences for Health, University of Milan, Segrate (MI), Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (CNR), Segrate (MI), Italy
| | - Roberta Leone
- Department of Biomedical Sciences for Health, University of Milan, Segrate (MI), Italy
| | - Paolo Grumati
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Michele Vasso
- Department of Biomedical Sciences for Health, University of Milan, Segrate (MI), Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (CNR), Segrate (MI), Italy
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, Institute of Protein Biochemistry, Italian National Research Council (CNR), Naples, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Segrate (MI), Italy
| | - Paola Braghetta
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Bonaldo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Segrate (MI), Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (CNR), Segrate (MI), Italy
- * E-mail:
| |
Collapse
|
20
|
Immunofluorescent visualisation of focal adhesion kinase in human skeletal muscle and its associated microvasculature. Histochem Cell Biol 2012; 138:617-26. [PMID: 22752263 DOI: 10.1007/s00418-012-0980-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
Within animal skeletal muscle, focal adhesion kinase (FAK) has been associated with load-dependent molecular and metabolic adaptation including the regulation of insulin sensitivity. This study aimed to generate the first visual images of the localisation of FAK within human skeletal muscle fibres and its associated microvasculature using widefield and confocal immunofluorescence microscopy. Percutaneous muscle biopsies, taken from five lean, active males, were frozen and 5-μm cryosections were incubated with FAK antibodies for visualisation in muscle fibres and the microvasculature. Anti-myosin heavy chain type I was used for fibre-type differentiation. Muscle sections were also incubated with anti-dihydropyridine receptor (DHPR) to investigate co-localisation of FAK with the t-tubules. FITC-conjugated Ulex europaeus Agglutinin I stained the endothelium of the capillaries, whilst anti-smooth muscle actin stained the vascular smooth muscle of arterioles. Fibre-type differences in the intensity of FAK immunofluorescence were determined with image analysis software. In transversely and longitudinally orientated fibres, FAK was localised at the sarcolemmal regions. In longitudinally orientated fibres, FAK staining also showed uniform striations across the fibre and co-staining with DHPR suggests FAK associates with the t-tubules. There was no fibre-type difference in sarcoplasmic FAK content. Within the capillary endothelium and arteriolar smooth muscle, FAK was distributed heterogeneously as clusters. This is the first study to visualise FAK in human skeletal muscle microvasculature and within the (sub)sarcolemmal and t-tubule regions using immunofluorescence microscopy. This technique will be an important tool for investigating the role of FAK in the intracellular signalling of human skeletal muscle and the endothelium of its associated microvasculature.
Collapse
|
21
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
22
|
A polymerase chain reaction-based methodology to detect gene doping. Eur J Appl Physiol 2011; 112:1527-36. [PMID: 21847575 DOI: 10.1007/s00421-011-2113-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
The non-therapeutic use of genes to enhance athletic performance (gene doping) is a novel threat to the world of sports. Skeletal muscle is a prime target of gene therapy and we asked whether we can develop a test system to produce and detect gene doping. Towards this end, we introduced a plasmid (pCMV-FAK, 3.8 kb, 50 μg) for constitutive expression of the chicken homologue for the regulator of muscle growth, focal adhesion kinase (FAK), via gene electro transfer in the anti-gravitational muscle, m. soleus, or gastrocnemius medialis of rats. Activation of hypertrophy signalling was monitored by assessing the ribosomal kinase p70S6K and muscle fibre cross section. Detectability of the introduced plasmid was monitored with polymerase chain reaction in deoxyribonucleic acids (DNA) from transfected muscle and serum. Muscle transfection with pCMV-FAK elevated FAK expression 7- and 73-fold, respectively, and increased mean cross section by 52 and 16% in targeted muscle fibres of soleus and gastrocnemius muscle 7 days after gene electro transfer. Concomitantly p70S6K content was increased in transfected soleus muscle (+110%). Detection of the exogenous plasmid sequence was possible in DNA and cDNA of muscle until 7 days after transfection, but not in serum except close to the site of plasmid deposition, 1 h after injection and surgery. The findings suggest that the reliable detection of gene doping in the immoral athlete is not possible unless a change in the current practice of tissue sampling is applied involving the collection of muscle biopsy close to the site of gene injection.
Collapse
|
23
|
Liu Q, Jones TI, Tang VW, Brieher WM, Jones PL. Facioscapulohumeral muscular dystrophy region gene-1 (FRG-1) is an actin-bundling protein associated with muscle-attachment sites. J Cell Sci 2010; 123:1116-23. [PMID: 20215405 DOI: 10.1242/jcs.058958] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In vertebrates, overexpression of facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) recapitulates the pathophysiology exhibited by FSHD patients, although the role of FRG1 in FSHD remains controversial and no precise function for FRG1 has been described in any organism. To gain insight into the function and potential role of FRG1 in FSHD, we analyzed the highly conserved Caenorhabditis elegans ortholog, frg-1. C. elegans body-wall muscles contain two distinct subcellular pools of FRG-1: nuclear FRG-1, concentrated in the nucleoli; and cytoplasmic FRG-1, associated with the Z-disk and costamere-like structures known as dense bodies. Functionally, we demonstrate that FRG-1 is an F-actin-bundling protein, consistent with its localization to dense bodies; this activity is conserved in human FRG1. This is particularly intriguing because it places FRG-1 along side the list of dense-body components whose vertebrate orthologs are involved in the myriad myopathies associated with disrupted costameres and Z-disks. Interestingly, overexpressed FRG-1 preferentially accumulates in the nucleus and, when overexpressed specifically from the frg-1 promoter, disrupts the adult ventral muscle structure and organization. Together, these data further support a role for FRG1 overexpression in FSHD pathophysiology and reveal the previously unsuspected direct involvement of FRG-1 in muscle structure and integrity.
Collapse
Affiliation(s)
- Qian Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Chemical and Life Sciences Laboratory, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
24
|
Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width. J Mol Cell Cardiol 2010; 48:817-23. [PMID: 20188736 DOI: 10.1016/j.yjmcc.2010.02.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 12/27/2022]
Abstract
A ventricular myocyte experiences changes in length and load during every beat of the heart and has the ability to remodel cell shape to maintain cardiac performance. Specifically, myocytes elongate in response to increased diastolic strain by adding sarcomeres in series, and they thicken in response to continued systolic stress by adding filaments in parallel. Myocytes do this while still keeping the resting sarcomere length close to its optimal value at the peak of the length-tension curve. This review focuses on the little understood mechanisms by which direction of growth is matched in a physiologically appropriate direction. We propose that the direction of strain is detected by differential phosphorylation of proteins in the costamere, which then transmit signaling to the Z-disc for parallel or series addition of thin filaments regulated via the actin capping processes. In this review, we link mechanotransduction to the molecular mechanisms for regulation of myocyte length and width.
Collapse
|
25
|
Cassano P, Flück M, Giovanna Sciancalepore A, Pesce V, Calvani M, Hoppeler H, Cantatore P, Gadaleta MN. Muscle unloading potentiates the effects of acetyl-L-carnitine on the slow oxidative muscle phenotype. Biofactors 2010; 36:70-7. [PMID: 20091799 DOI: 10.1002/biof.74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effect of acetyl-L-carnitine (ALCAR) supplementation to 3-month-old rats in normal-loading and unloading conditions has been here investigated by a combined morphological, biochemical and transcriptional approach to test whether ALCAR might cause a remodeling of the metabolic/contractile phenotype of soleus muscle. Morphological assessment demonstrated an increase of type I oxidative fiber content and cross-sectional area in ALCAR-treated animals both in normal-loading and in unloading conditions. ALCAR prevented loss of mitochondrial mass in unloaded animals whereas no ALCAR-dependent increase of mitochondrial mass occurred in normal-loaded muscle. Validated microarray analysis delineated an ALCAR-induced maintenance of a slow-oxidative expression program only in unloaded soleus muscle. Indeed, the muscle adjustment of the expression profile of factors underlying mitochondrial oxidative metabolism, protein turnover, fiber type differentiation and an adaptation of voltage-gated ion channel expression was distinguishable with respect to the loading status. This selectivity may suggest a key role of muscle loading status in the manifestation of ALCAR effects. The results extend to a broader level of biological informations the previous notion on ALCAR positive effect in rat soleus muscle during unloading and point to a role of ALCAR for the maintenance of its slow-oxidative fiber character.
Collapse
Affiliation(s)
- Pierluigi Cassano
- Department of Biochemistry and Molecular Biology "Ernesto Quagliariello", University of Bari, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Durieux AC, D'Antona G, Desplanches D, Freyssenet D, Klossner S, Bottinelli R, Flück M. Focal adhesion kinase is a load-dependent governor of the slow contractile and oxidative muscle phenotype. J Physiol 2009; 587:3703-17. [PMID: 19470782 DOI: 10.1113/jphysiol.2009.171355] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Striated muscle exhibits a pronounced structural-functional plasticity in response to chronic alterations in loading. We assessed the implication of focal adhesion kinase (FAK) signalling in mechano-regulated differentiation of slow-oxidative muscle. Load-dependent consequences of FAK signal modulation were identified using a multi-level approach after electrotransfer of rat soleus muscle with FAK-expression plasmid vs. empty plasmid-transfected contralateral controls. Muscle fibre-targeted over-expression of FAK in anti-gravitational muscle for 9 days up-regulated transcript levels of gene ontologies underpinning mitochondrial metabolism and contraction in the transfected belly portion. Concomitantly, mRNA expression of the major fast-type myosin heavy chain (MHC) isoform, MHC2A, was reduced. The promotion of the slow-oxidative expression programme by FAK was abolished after co-expression of the FAK inhibitor FAK-related non-kinase (FRNK). Elevated protein content of MHC1 (+9%) and proteins of mitochondrial respiration (+165-610%) with FAK overexpression demonstrated the translation of transcript differentiation in targeted muscle fibres towards a slow-oxidative muscle phenotype. Coincidentally MHC2A protein was reduced by 50% due to protection of muscle from de-differentiation with electrotransfer. Fibre cross section in FAK-transfected muscle was elevated by 6%. The FAK-modulated muscle transcriptome was load-dependent and regulated in correspondence to tyrosine 397 phosphorylation of FAK. In the context of overload, the FAK-induced gene expression became manifest at the level of contraction by a slow transformation and the re-establishment of normal muscle force from the lowered levels with transfection. These results highlight the analytic power of a systematic somatic transgene approach by mapping a role of FAK in the dominant mechano-regulation of muscular motor performance via control of gene expression.
Collapse
|
27
|
Mechano-transduction to muscle protein synthesis is modulated by FAK. Eur J Appl Physiol 2009; 106:389-98. [PMID: 19294408 DOI: 10.1007/s00421-009-1032-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2009] [Indexed: 01/27/2023]
Abstract
We examined the involvement of focal adhesion kinase (FAK) in mechano-regulated signalling to protein synthesis by combining muscle-targeted transgenesis with a physiological model for un- and reloading of hindlimbs. Transfections of mouse tibialis anterior muscle with a FAK expression construct increased FAK protein 1.6-fold versus empty transfection in the contralateral leg and elevated FAK concentration at the sarcolemma. Altered activation status of phosphotransfer enzymes and downstream translation factors showed that FAK overexpression was functionally important. FAK auto-phosphorylation on Y397 was enhanced between 1 and 6 h of reloading and preceded the activation of p70S6K after 24 h of reloading. Akt and translation initiation factors 4E-BP1 and 2A, which reside up- or downstream of p70S6K, respectively, showed no FAK-modulated regulation. The findings identify FAK as an upstream element of the mechano-sensory pathway of p70S6K activation whose Akt-independent regulation intervenes in control of muscle mass by mechanical stimuli in humans.
Collapse
|
28
|
Abstract
Contractile tissues demonstrate a pronounced capacity to remodel their composition in response to mechanical challenges. Descriptive evidence suggests the upstream involvement of the phosphotransfer enzyme FAK (focal adhesion kinase) in the molecular control of load-dependent muscle plasticity. Thereby FAK evolves as a myocellular transducer of mechanical signals towards downstream transcript expression in myofibres. Recent advances in somatic gene therapy now allow the exploration of the functional involvement of this enzyme in mechanotransduction in intact muscle.
Collapse
|
29
|
Abstract
Muscles and tendons are highly adaptive tissues in response to chronic changes in loading and to aging. A remarkable reorganization in muscle architecture occurs in both conditions together with significant alterations in tendon mechanical properties. This review discusses the possible mechanisms underlying these myotendinous changes and the influence thereof on the behavior of the muscle-tendon complex as a whole.
Collapse
Affiliation(s)
- Marco V Narici
- Institute for Biophysical and Clinical Research into Human Movement, Manchester Metropolitan University, MMU-Cheshire, Cheshire, United Kingdom.
| | | |
Collapse
|
30
|
de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici MV. Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J Physiol 2007; 583:1079-91. [PMID: 17656438 PMCID: PMC2277190 DOI: 10.1113/jphysiol.2007.135392] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Muscles and tendons are highly adaptive to changes in chronic loading, though little is known about the adaptative time course. We tested the hypothesis that, in response to unilateral lower limb suspension (ULLS), the magnitude of tendon mechanical adaptations would match or exceed those of skeletal muscle. Seventeen men (1.79 +/- 0.05 m, 76.6 +/- 10.3 kg, 22.3 +/- 3.8 years) underwent ULLS for 23 days (n = 9) or acted as controls (n = 8). Knee extensor (KE) torque, voluntary activation (VA), cross-sectional area (CSA) (by magnetic resonance imaging), vastus lateralis fascicle length (L(f)) and pennation angle (), patellar tendon stiffness and Young's modulus (by ultrasonography) were measured before, during and at the end of ULLS. After 14 and 23 days (i) KE torque decreased by 14.8 +/- 5.5% (P < 0.001) and 21.0 +/- 7.1% (P < 0.001), respectively; (ii) VA did not change; (iii) KE CSA decreased by 5.2 +/- 0.7% (P < 0.001) and 10.0 +/- 2.0% (P < 0.001), respectively; L(f) decreased by 5.9% (n.s.) and 7.7% (P < 0.05), respectively, and by 3.2% (P < 0.05) and 7.6% (P < 0.01); (iv) tendon stiffness decreased by 9.8 +/- 8.2% (P < 0.05) and 29.3 +/- 11.5% (P < 0.005), respectively, and Young's modulus by 9.2 +/- 8.2% (P < 0.05) and 30.1 +/- 11.9% (P < 0.01), respectively, with no changes in the controls. Hence, ULLS induces rapid losses of KE muscle size, architecture and function, but not in neural drive. Significant deterioration in tendon mechanical properties also occurs within 2 weeks, exacerbating in the third week of ULLS. Rehabilitation to limit muscle and tendon deterioration should probably start within 2 weeks of unloading.
Collapse
Affiliation(s)
- Maarten D de Boer
- Manchester Metropolitan University, Institute for Biophysical and Clinical Research into Human Movement, Alsager ST7 2HL, UK.
| | | | | | | | | |
Collapse
|
31
|
Quach NL, Rando TA. Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol 2006; 293:38-52. [PMID: 16533505 DOI: 10.1016/j.ydbio.2005.12.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 12/12/2005] [Accepted: 12/14/2005] [Indexed: 02/03/2023]
Abstract
A central question in muscle biology is how costameres are formed and become aligned with underlying myofibrils in mature tissues. Costameres are composed of focal adhesion proteins, including vinculin and paxillin, and anchor myofibril Z-bands to the sarcolemma. In the present study, we investigated the process of costamere formation ("costamerogenesis") in differentiating primary mouse myoblasts. Using vinculin and paxillin as costameric markers, we found that two additional focal adhesion components, alpha5beta1 integrin and focal adhesion kinase (FAK), are associated with costameres. We have characterized costamerogenesis as occurring in three distinct stages based on the organizational pattern of these costameric proteins. We show that both costamerogenesis and myofibrillogenesis are initiated at sites of membrane contacts with the extracellular matrix and that their maturation is tightly coupled. To test the importance of FAK signaling in these processes, we analyzed cells expressing a dominant negative form of FAK (dnFAK). When cells expressing dnFAK were induced to differentiate, both costamerogenesis and myofibrillogenesis were disrupted although the expression of constituent proteins was not inhibited. Likewise, inhibiting FAK activity by reducing FAK levels using an siRNA approach also resulted in an inhibition of costamerogenesis and myofibrillogenesis. The relationship between costamere and myofibril formation was tested further by treating myotube cultures with potassium or tetrodotoxin to block contraction and disrupt myofibril organization. This also resulted in inhibition of costamere maturation. We present a model of costamerogenesis whereby signaling through FAK is essential for both normal costamerogenesis and normal myofibrillogenesis which are tightly coupled during skeletal myogenesis.
Collapse
Affiliation(s)
- Navaline L Quach
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|