1
|
Lock MC, Ripley DM, Smith KLM, Mueller CA, Shiels HA, Crossley DA, Galli GLJ. Developmental plasticity of the cardiovascular system in oviparous vertebrates: effects of chronic hypoxia and interactive stressors in the context of climate change. J Exp Biol 2024; 227:jeb245530. [PMID: 39109475 PMCID: PMC11418206 DOI: 10.1242/jeb.245530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Daniel M. Ripley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kerri L. M. Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Casey A. Mueller
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Gina L. J. Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
2
|
Ruhr IM, Shiels HA, Crossley DA, Galli GLJ. Developmental programming of sarcoplasmic reticulum function improves cardiac anoxia tolerance in turtles. J Exp Biol 2024; 227:jeb247434. [PMID: 39246147 DOI: 10.1242/jeb.247434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Oxygen deprivation during embryonic development can permanently remodel the vertebrate heart, often causing cardiovascular abnormalities in adulthood. While this phenomenon is mostly damaging, recent evidence suggests developmental hypoxia produces stress-tolerant phenotypes in some ectothermic vertebrates. Embryonic common snapping turtles (Chelydra serpentina) subjected to chronic hypoxia display improved cardiac anoxia tolerance after hatching, which is associated with altered Ca2+ homeostasis in heart cells (cardiomyocytes). Here, we examined the possibility that changes in Ca2+ cycling, through the sarcoplasmic reticulum (SR), underlie the developmentally programmed cardiac phenotype of snapping turtles. We investigated this hypothesis by isolating cardiomyocytes from juvenile turtles that developed in either normoxia (21% O2; 'N21') or chronic hypoxia (10% O2; 'H10') and subjected the cells to anoxia/reoxygenation, in either the presence or absence of SR Ca2+-cycling inhibitors. We simultaneously measured cellular shortening, intracellular Ca2+ concentration ([Ca2+]i), and intracellular pH (pHi). Under normoxic conditions, N21 and H10 cardiomyocytes shortened equally, but H10 Ca2+ transients (Δ[Ca2+]i) were twofold smaller than those of N21 cells, and SR inhibition only decreased N21 shortening and Δ[Ca2+]i. Anoxia subsequently depressed shortening, Δ[Ca2+]i and pHi in control N21 and H10 cardiomyocytes, yet H10 shortening and Δ[Ca2+]i recovered to pre-anoxic levels, partly due to enhanced myofilament Ca2+ sensitivity. SR blockade abolished the recovery of anoxic H10 cardiomyocytes and potentiated decreases in shortening, Δ[Ca2+]i and pHi. Our novel results provide the first evidence of developmental programming of SR function and demonstrate that developmental hypoxia confers a long-lasting, superior anoxia-tolerant cardiac phenotype in snapping turtles, by modifying SR function and enhancing myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Ilan M Ruhr
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
- School of Science, Engineering, & Environment, University of Salford, Salford M5 4NT, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Gina L J Galli
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
3
|
Crossley JL, Smith B, Tull M, Elsey RM, Wang T, Crossley DA. Hypoxic incubation at 50% of atmospheric levels shifts the cardiovascular response to acute hypoxia in American alligators, Alligator mississippiensis. J Comp Physiol B 2023; 193:545-556. [PMID: 37615772 DOI: 10.1007/s00360-023-01510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
We designed a series of studies to investigate whether hypoxia (10% O2) from 20% of incubation to hatching, or from 20 to 50% of incubation, affects cardiovascular function when juvenile American alligators reached an age of 4-5 years compared to juveniles that were incubated in 21% O2. At this age, we measured blood flows in all the major arteries as well as heart rate, blood pressure, and blood gases in animals in normoxia and acute hypoxia (10% O2 and 5% O2). In all three groups, exposure to acute hypoxia of 10% O2 caused a decrease in blood O2 concentration and an increase in heart rate in 4-5-year-old animals, with limited effects on blood flow in the major outflow vessels of the heart. In response to more acute hypoxia (5% O2), where blood O2 concentration decreased even further, we measured increased heart rate and blood flow in the right aorta, subclavian artery, carotid artery, and pulmonary artery; however, blood flow in the left aorta either decreased or did not change. Embryonic exposure to hypoxia increased the threshold for eliciting an increase in heart rate indicative of a decrease in sensitivity. Alligators that had been incubated in hypoxia also had higher arterial PCO2 values in normoxia, suggesting a reduction in ventilation relative to metabolism.
Collapse
Affiliation(s)
- Janna L Crossley
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern, Dallas, TX, 75390, USA
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| | - Brandt Smith
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| | - Melissa Tull
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA, 70643, USA
| | - Tobias Wang
- Department of Biology, Zoophysiology, Aarhus University, Aarhus C, Denmark
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
| |
Collapse
|
4
|
Galli GLJ, Lock MC, Smith KLM, Giussani DA, Crossley DA. Effects of Developmental Hypoxia on the Vertebrate Cardiovascular System. Physiology (Bethesda) 2023; 38:0. [PMID: 36317939 DOI: 10.1152/physiol.00022.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Developmental hypoxia has profound and persistent effects on the vertebrate cardiovascular system, but the nature, magnitude, and long-term outcome of the hypoxic consequences are species specific. Here we aim to identify common and novel cardiovascular responses among vertebrates that encounter developmental hypoxia, and we discuss the possible medical and ecological implications.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mitchell C Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kerri L M Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
5
|
Ruhr I, Bierstedt J, Rhen T, Das D, Singh SK, Miller S, Crossley DA, Galli GLJ. Developmental programming of DNA methylation and gene expression patterns is associated with extreme cardiovascular tolerance to anoxia in the common snapping turtle. Epigenetics Chromatin 2021; 14:42. [PMID: 34488850 PMCID: PMC8420019 DOI: 10.1186/s13072-021-00414-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background Environmental fluctuation during embryonic and fetal development can permanently alter an organism’s morphology, physiology, and behaviour. This phenomenon, known as developmental plasticity, is particularly relevant to reptiles that develop in subterranean nests with variable oxygen tensions. Previous work has shown hypoxia permanently alters the cardiovascular system of snapping turtles and may improve cardiac anoxia tolerance later in life. The mechanisms driving this process are unknown but may involve epigenetic regulation of gene expression via DNA methylation. To test this hypothesis, we assessed in situ cardiac performance during 2 h of acute anoxia in juvenile turtles previously exposed to normoxia (21% oxygen) or hypoxia (10% oxygen) during embryogenesis. Next, we analysed DNA methylation and gene expression patterns in turtles from the same cohorts using whole genome bisulfite sequencing, which represents the first high-resolution investigation of DNA methylation patterns in any reptilian species. Results Genome-wide correlations between CpG and CpG island methylation and gene expression patterns in the snapping turtle were consistent with patterns observed in mammals. As hypothesized, developmental hypoxia increased juvenile turtle cardiac anoxia tolerance and programmed DNA methylation and gene expression patterns. Programmed differences in expression of genes such as SCN5A may account for differences in heart rate, while genes such as TNNT2 and TPM3 may underlie differences in calcium sensitivity and contractility of cardiomyocytes and cardiac inotropy. Finally, we identified putative transcription factor-binding sites in promoters and in differentially methylated CpG islands that suggest a model linking programming of DNA methylation during embryogenesis to differential gene expression and cardiovascular physiology later in life. Binding sites for hypoxia inducible factors (HIF1A, ARNT, and EPAS1) and key transcription factors activated by MAPK and BMP signaling (RREB1 and SMAD4) are implicated. Conclusions Our data strongly suggests that DNA methylation plays a conserved role in the regulation of gene expression in reptiles. We also show that embryonic hypoxia programs DNA methylation and gene expression patterns and that these changes are associated with enhanced cardiac anoxia tolerance later in life. Programming of cardiac anoxia tolerance has major ecological implications for snapping turtles, because these animals regularly exploit anoxic environments throughout their lifespan. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00414-7.
Collapse
Affiliation(s)
- Ilan Ruhr
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, M13 9NT, UK
| | - Jacob Bierstedt
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Debojyoti Das
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Sunil Kumar Singh
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Soleille Miller
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Gina L J Galli
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, M13 9NT, UK
| |
Collapse
|
6
|
Filogonio R, Dubansky BD, Dubansky BH, Wang T, Elsey RM, Leite CAC, Crossley DA. Arterial wall thickening normalizes arterial wall tension with growth in American alligators, Alligator mississippiensis. J Comp Physiol B 2021; 191:553-562. [PMID: 33629153 DOI: 10.1007/s00360-021-01353-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
Arterial wall tension increases with luminal radius and arterial pressure. Hence, as body mass (Mb) increases, associated increases in radius induces larger tension. Thus, it could be predicted that high tension would increase the potential for rupture of the arterial wall. Studies on mammals have focused on systemic arteries and have shown that arterial wall thickness increases with Mb and normalizes tension. Reptiles are good models to study scaling because some species exhibit large body size range associated with growth, thus, allowing for ontogenetic comparisons. We used post hatch American alligators, Alligator mississippiensis, ranging from 0.12 to 6.80 kg (~ 60-fold) to investigate how both the right aortic arch (RAo) and the left pulmonary artery (LPA) change with Mb. We tested two possibilities: (i) wall thickness increases with Mb and normalizes wall tension, such that stress (stress = tension/thickness) remains unchanged; (ii) collagen content scales with Mb and increases arterial strength. We measured heart rate and systolic and mean pressures from both systemic and pulmonary circulations in anesthetized animals. Once stabilized alligators were injected with adrenaline to induce a physiologically relevant increase in pressure. Heart rate decreased and systemic pressures increased with Mb; pulmonary pressures remained unchanged. Both the RAo and LPA were fixed under physiological hydrostatic pressures and displayed larger radius, wall tension and thickness as Mb increased, thus, stress was independent from Mb; relative collagen content was unchanged. We conclude that increased wall thickness normalizes tension and reduces the chances of arterial walls rupturing in large alligators.
Collapse
Affiliation(s)
- Renato Filogonio
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Benjamin D Dubansky
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, TX, 76203-5220, USA
| | - Brooke H Dubansky
- Department of Medical Laboratory Sciences and Public Health, Tarleton State University, Fort Worth, TX, USA
| | - Tobias Wang
- Section for Zoophysiology, Department of Biosciences, Aarhus University, 8000, Aarhus C, Denmark
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA, 70643, USA
| | - Cléo A C Leite
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Dane A Crossley
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, TX, 76203-5220, USA
| |
Collapse
|