1
|
Le Sage EH, Reinert LK, Ohmer MEB, LaBumbard BC, Altman KA, Brannelly LA, Latella I, McDonnell NB, Saenz V, Walsman JC, Wilber MQ, Woodhams DC, Voyles J, Richards-Zawacki CL, Rollins-Smith LA. Diverse Relationships between Batrachochytrium Infections and Antimicrobial Peptide Defenses Across Leopard Frog Populations. Integr Comp Biol 2024; 64:921-931. [PMID: 39090981 DOI: 10.1093/icb/icae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
Antimicrobial peptides (AMPs) play a fundamental role in the innate defense against microbial pathogens, as well as other immune and non-immune functions. Their role in amphibian skin defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd) is exemplified by experiments in which depletion of host's stored AMPs increases mortality from infection. Yet, the question remains whether there are generalizable patterns of negative or positive correlations between stored AMP defenses and the probability of infection or infection intensity across populations and species. This study aims to expand on prior field studies of AMP quantities and compositions by correlating stored defenses with an estimated risk of Bd exposure (prevalence and mean infection intensity in each survey) in five locations across the United States and a total of three species. In all locations, known AMPs correlated with the ability of recovered secretions to inhibit Bd in vitro. We found that stored AMP defenses were generally unrelated to Bd infection except in one location where the relative intensity of known AMPs was lower in secretions from infected frogs. In all other locations, known AMP relative intensities were higher in infected frogs. Stored peptide quantity was either positively or negatively correlated with Bd exposure risk. Thus, future experiments coupled with organismal modeling can elucidate whether Bd infection affects secretion/synthesis and will provide insight into how to interpret amphibian ecoimmunology studies of AMPs. We also demonstrate that future AMP isolating and sequencing studies can focus efforts by correlating mass spectrometry peaks to inhibitory capacity using linear decomposition modeling.
Collapse
Affiliation(s)
- Emily H Le Sage
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Laura K Reinert
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | | | - Karie A Altman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Laura A Brannelly
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Ian Latella
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Nina B McDonnell
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Veronica Saenz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jason C Walsman
- Earth Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Mark Q Wilber
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | | - Louise A Rollins-Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Wu NC. Pathogen load predicts host functional disruption: A meta‐analysis of an amphibian fungal panzootic. Funct Ecol 2023. [DOI: 10.1111/1365-2435.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nicholas C. Wu
- Hawkesbury Institute for the Environment Western Sydney University Richmond New South Wales Australia
| |
Collapse
|
3
|
Humphries JE, Lanctôt CM, Robert J, McCallum HI, Newell DA, Grogan LF. Do immune system changes at metamorphosis predict vulnerability to chytridiomycosis? An update. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104510. [PMID: 35985564 DOI: 10.1016/j.dci.2022.104510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/20/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Amphibians are among the vertebrate groups suffering great losses of biodiversity due to a variety of causes including diseases, such as chytridiomycosis (caused by the fungal pathogens Batrachochytrium dendrobatidis and B. salamandrivorans). The amphibian metamorphic period has been identified as being particularly vulnerable to chytridiomycosis, with dramatic physiological and immunological reorganisation likely contributing to this vulnerability. Here, we overview the processes behind these changes at metamorphosis and then perform a systematic literature review to capture the breadth of empirical research performed over the last two decades on the metamorphic immune response. We found that few studies focused specifically on the immune response during the peri-metamorphic stages of amphibian development and fewer still on the implications of their findings with respect to chytridiomycosis. We recommend future studies consider components of the immune system that are currently under-represented in the literature on amphibian metamorphosis, particularly pathogen recognition pathways. Although logistically challenging, we suggest varying the timing of exposure to Bd across metamorphosis to examine the relative importance of pathogen evasion, suppression or dysregulation of the immune system. We also suggest elucidating the underlying mechanisms of the increased susceptibility to chytridiomycosis at metamorphosis and the associated implications for population persistence. For species that overlap a distribution where Bd/Bsal are now endemic, we recommend a greater focus on management strategies that consider the important peri-metamorphic period.
Collapse
Affiliation(s)
- Josephine E Humphries
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia.
| | - Chantal M Lanctôt
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Australian Rivers Institute, Griffith University, Southport, Queensland, 4222, Australia
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, 14642, Rochester, NY, United States
| | - Hamish I McCallum
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia
| | - David A Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia
| | - Laura F Grogan
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia
| |
Collapse
|
4
|
Basanta MD, Anaya‐Morales SL, Martínez‐Ugalde E, González Martínez TM, Ávila‐Akerberg VD, Trejo MV, Rebollar EA. Metamorphosis and seasonality are major determinants of chytrid infection in a paedomorphic salamander. Anim Conserv 2022. [DOI: 10.1111/acv.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. D. Basanta
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
- Department of Biology University of Nevada Reno Reno NV USA
| | - S. L. Anaya‐Morales
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
| | - E. Martínez‐Ugalde
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
| | - T. M. González Martínez
- Facultad de Ciencias Universidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de México Mexico
| | - V. D. Ávila‐Akerberg
- Instituto de Ciencias Agropecuarias y Rurales Universidad Autónoma del Estado de México Toluca Estado de México Mexico
| | - M. V. Trejo
- Facultad de Ciencias Universidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de México Mexico
| | - E. A. Rebollar
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
| |
Collapse
|
5
|
Rosa GM, Perez R, Richards LA, Richards‐Zawacki CL, Smilanich AM, Reinert LK, Rollins‐Smith LA, Wetzel DP, Voyles J. Seasonality of host immunity in a tropical disease system. Ecosphere 2022. [DOI: 10.1002/ecs2.4158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Gonçalo M. Rosa
- Department of Biology University of Nevada, Reno Reno Nevada USA
- Institute of Zoology Zoological Society of London London UK
- Centre for Ecology, Evolution and Environmental Changes Faculdade de Ciências da Universidade de Lisboa Lisbon Portugal
| | - Rachel Perez
- Department of Biology New Mexico Institute of Mining and Technology Socorro New Mexico USA
| | - Lora A. Richards
- Department of Biology University of Nevada, Reno Reno Nevada USA
| | | | | | - Laura K. Reinert
- Department of Pathology Microbiology and Immunology, Vanderbilt University School of Medicine Nashville Tennessee USA
| | - Louise A. Rollins‐Smith
- Department of Pathology Microbiology and Immunology, Vanderbilt University School of Medicine Nashville Tennessee USA
| | - Daniel P. Wetzel
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Jamie Voyles
- Department of Biology University of Nevada, Reno Reno Nevada USA
| |
Collapse
|
6
|
Basanta MD, Rebollar EA, García-Castillo MG, Parra Olea G. Comparative Analysis of Skin Bacterial Diversity and Its Potential Antifungal Function Between Desert and Pine Forest Populations of Boreal Toads Anaxyrus boreas. MICROBIAL ECOLOGY 2022; 84:257-266. [PMID: 34427721 DOI: 10.1007/s00248-021-01845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The skin microbiome in amphibians has gained a lot of attention as some of its members play a protective role against pathogens such as the fungus Batrachochytrium dendrobatidis (Bd). The composition of skin bacterial communities has been suggested as one of the factors explaining differences in susceptibility to Bd among amphibian species and populations. The boreal toad Anaxyrus boreas is known to be susceptible to Bd, and severe population declines in its southeastern range have been documented. However, throughout A. boreas distribution, populations present differences in susceptibility to Bd infections which may be associated with differences in skin microbial diversity. This study compared the skin bacterial diversity and Bd infection levels of A. boreas in one desert population and one pine forest population from Baja California, Mexico. We found that desert and pine forest toad populations exhibit differences in skin bacterial community structure but show similar Bd infection levels. Using a predictive method, we found that the abundance of bacteria with potential Bd-inhibitory properties differed between uninfected and infected individuals but not between populations. Our data suggest that several bacteria in the skin community may be offering protection from Bd infections in these A. boreas populations. This study provides foundational evidence for future studies seeking to understand the skin-microbial variation among boreal toads' populations and its relation with Bd susceptibility.
Collapse
Affiliation(s)
- M Delia Basanta
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mirna G García-Castillo
- Universidad Politécnica de Huatusco, Huatusco, Veracruz, México
- Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba-Córdoba, Universidad Veracruzana, Amatlán de Los Reyes, Veracruz, México
| | - Gabriela Parra Olea
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
7
|
Basanta MD, Rebollar EA, García-Castillo MG, Rosenblum EB, Byrne AQ, Piovia-Scott J, Parra-Olea G. Genetic variation of Batrachochytrium dendrobatidis is linked to skin bacterial diversity in the Pacific treefrog Hyliola regilla (hypochondriaca). Environ Microbiol 2021; 24:494-506. [PMID: 34959256 DOI: 10.1111/1462-2920.15861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
Symbiotic bacterial communities are crucial to combating infections and contribute to host health. The amphibian skin microbiome plays an important role in protecting their hosts against pathogens such as Batrachochytrium dendrobatidis (Bd), one of the causative agents of chytridiomycosis, which is responsible for dramatic amphibian population declines worldwide. Although symbiotic skin bacteria are known to inhibit Bd growth, an understanding of the relationship between Bd genetic variability, environmental conditions, and skin bacterial communities is limited. Therefore, we examined the associations between Bd infection load, Bd genetic diversity and skin bacterial communities in five populations of Hyliola regilla (hypochondriaca) from environmentally contrasting sites in Baja California, Mexico. We observed differences in Bd genetics and infection load among sites and environments. Genetic analysis of Bd isolates revealed patterns of spatial structure corresponding to the five sites sampled. Amphibian skin bacterial diversity and community structure differed among environments and sites. Bacterial community composition was correlated with Bd genetic differences and infection load, with specific bacterial taxa enriched on infected and un-infected frogs. Our results indicate that skin-associated bacteria and Bd strains likely interact on the host skin, with consequences for microbial community structure and Bd infection intensity.
Collapse
Affiliation(s)
- María Delia Basanta
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico.,Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, AP 70-153, C.P. 04510, Mexico.,Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mirna G García-Castillo
- Universidad Politécnica de Huatusco, Huatusco, Veracruz, Mexico.,Universidad Veracruzana, Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba-Córdoba, Amatlán de los Reyes, Veracruz, Mexico
| | - Erica Bree Rosenblum
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Allison Q Byrne
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | | |
Collapse
|
8
|
TEMPERATURE AS A DRIVER OF THE PATHOGENICITY AND VIRULENCE OF AMPHIBIAN CHYTRID FUNGUS BATRACHOCHYTRIUM DENDROBATIDIS: A SYSTEMATIC REVIEW. J Wildl Dis 2021; 57:477-494. [PMID: 34019674 DOI: 10.7589/jwd-d-20-00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/10/2021] [Indexed: 11/20/2022]
Abstract
Chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), is a leading cause of global amphibian declines. Severe infections with Bd can lead to cardiac arrest, and mass deaths during epidemics have been reported. Temperature, pH, salinity, and moisture are important determinants of the survival, growth, reproduction, and pathogenicity of Bd, as well as its effect on amphibian populations. Here, we synthesize current knowledge on the role of temperature as a driver of the pathogenicity and virulence of Bd to better understand the effects of temperature on amphibian defense mechanisms against infection. This review advises on research direction and management approaches to benefit amphibian populations affected by Bd. We conclude by offering guidelines for four levels of temperature monitoring in amphibian field studies to improve consistency between studies: regional climate, habitat, microhabitat, and amphibian host.
Collapse
|
9
|
Sonn JM, Porter WP, Mathewson PD, Richards-Zawacki CL. Predictions of Disease Risk in Space and Time Based on the Thermal Physiology of an Amphibian Host-Pathogen Interaction. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.576065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases have been responsible for declines and extinctions in a growing number of species. Predicting disease variables like infection prevalence and mortality and how they vary in space and time will be critical to understanding how host-pathogen dynamics play out in natural environments and will help to inform management actions. The pandemic disease chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), has been implicated in declines in hundreds of amphibian species worldwide. We used field-collected measurements of host body temperatures and other physiological parameters to develop a mechanistic model of disease risk in a declining amphibian, the Northern cricket frog (Acris crepitans). We first used a biophysical model to predict host body temperatures across the species range in the eastern United States. We then used empirically derived relationships between host body temperature, infection prevalence and survival to predict where and when the risk of Bd-related declines is greatest. Our model predicts that pathogen prevalence is greatest, and survival of infected A. crepitans frogs is lowest, just prior to breeding when host body temperatures are low. Taken together, these results suggest that Bd poses the greatest threat to short-lived A. crepitans populations in the northern part of this host’s range and that disease-related recruitment failure may be common. Furthermore, our study demonstrates the utility of mechanistic modeling approaches for predicting disease outbreaks and dynamics in animal hosts.
Collapse
|
10
|
Le Sage EH, LaBumbard BC, Reinert LK, Miller BT, Richards-Zawacki CL, Woodhams DC, Rollins-Smith LA. Preparatory immunity: Seasonality of mucosal skin defences and Batrachochytrium infections in Southern leopard frogs. J Anim Ecol 2020; 90:542-554. [PMID: 33179786 DOI: 10.1111/1365-2656.13386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Accurately predicting the impacts of climate change on wildlife health requires a deeper understanding of seasonal rhythms in host-pathogen interactions. The amphibian pathogen, Batrachochytrium dendrobatidis (Bd), exhibits seasonality in incidence; however, the role that biological rhythms in host defences play in defining this pattern remains largely unknown. The aim of this study was to examine whether host immune and microbiome defences against Bd correspond with infection risk and seasonal fluctuations in temperature and humidity. Over the course of a year, five populations of Southern leopard frogs (Rana [Lithobates] sphenocephala) in Tennessee, United States, were surveyed for host immunity, microbiome and pathogen dynamics. Frogs were swabbed for pathogen load and skin bacterial diversity and stimulated to release stored antimicrobial peptides (AMPs). Secretions were analysed to estimate total hydrophobic peptide concentrations, presence of known AMPs and effectiveness of Bd growth inhibition in vitro. The diversity and proportion of bacterial reads with a 99% match to sequences of isolates known to inhibit Bd growth in vitro were used as an estimate of predicted anti-Bd function of the skin microbiome. Batrachochytrium dendrobatidis dynamics followed the expected seasonal fluctuations-peaks in cooler months-which coincided with when host mucosal defences were most potent against Bd. Specifically, the concentration and expression of stored AMPs cycled synchronously with Bd dynamics. Although microbiome changes followed more linear trends over time, the proportion of bacteria that can function to inhibit Bd growth was greatest when risk of Bd infection was highest. We interpret the increase in peptide storage in the fall and the shift to a more anti-Bd microbiome over winter as a preparatory response for subsequent infection risk during the colder periods when AMP synthesis and bacterial growth is slow and pathogen pressure from this cool-adapted fungus is high. Given that a decrease in stored AMP concentrations as temperatures warm in spring likely means greater secretion rates, the subsequent decrease in prevalence suggests seasonality of Bd in this host may be in part regulated by annual immune rhythms, and dominated by the effects of temperature.
Collapse
Affiliation(s)
- Emily H Le Sage
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Laura K Reinert
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian T Miller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | | | - Doug C Woodhams
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
11
|
Grogan LF, Humphries JE, Robert J, Lanctôt CM, Nock CJ, Newell DA, McCallum HI. Immunological Aspects of Chytridiomycosis. J Fungi (Basel) 2020; 6:jof6040234. [PMID: 33086692 PMCID: PMC7712659 DOI: 10.3390/jof6040234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Amphibians are currently the most threatened vertebrate class, with the disease chytridiomycosis being a major contributor to their global declines. Chytridiomycosis is a frequently fatal skin disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). The severity and extent of the impact of the infection caused by these pathogens across modern Amphibia are unprecedented in the history of vertebrate infectious diseases. The immune system of amphibians is thought to be largely similar to that of other jawed vertebrates, such as mammals. However, amphibian hosts are both ectothermic and water-dependent, which are characteristics favouring fungal proliferation. Although amphibians possess robust constitutive host defences, Bd/Bsal replicate within host cells once these defences have been breached. Intracellular fungal localisation may contribute to evasion of the induced innate immune response. Increasing evidence suggests that once the innate defences are surpassed, fungal virulence factors suppress the targeted adaptive immune responses whilst promoting an ineffectual inflammatory cascade, resulting in immunopathology and systemic metabolic disruption. Thus, although infections are contained within the integument, crucial homeostatic processes become compromised, leading to mortality. In this paper, we present an integrated synthesis of amphibian post-metamorphic immunological responses and the corresponding outcomes of infection with Bd, focusing on recent developments within the field and highlighting future directions.
Collapse
Affiliation(s)
- Laura F. Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Southport, QLD 4222, Australia;
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
- Correspondence:
| | - Josephine E. Humphries
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
| | - Jacques Robert
- University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Chantal M. Lanctôt
- Australian Rivers Institute, Griffith University, Southport, QLD 4222, Australia;
| | - Catherine J. Nock
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - David A. Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
| | - Hamish I. McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Southport, QLD 4222, Australia;
| |
Collapse
|
12
|
Rodriguez KM, Voyles J. The amphibian complement system and chytridiomycosis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:706-719. [PMID: 33052039 PMCID: PMC7821119 DOI: 10.1002/jez.2419] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
Understanding host immune function and ecoimmunology is increasingly important at a time when emerging infectious diseases (EIDs) threaten wildlife. One EID that has emerged and spread widely in recent years is chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), which is implicated unprecedented amphibian declines around the world. The impacts of Bd have been severe for many amphibian species, but some populations have exhibited signs of persistence, and even recovery, in some regions. Many mechanisms may underpin this pattern and amphibian immune responses are likely one key component. Although we have made great strides in understanding amphibian immunity, the complement system remains poorly understood. The complement system is a nonspecific, innate immune defense that is known to enhance other immune responses. Complement activation can occur by three different biochemical pathways and result in protective mechanisms, such as inflammation, opsonization, and pathogen lysis, thereby providing protection to the host. We currently lack an understanding of complement pathway activation for chytridiomycosis, but several studies have suggested that it may be a key part of an early and robust immune response that confers host resistance. Here, we review the available research on the complement system in general as well as amphibian complement responses to Bd infection. Additionally, we propose future research directions that will increase our understanding of the amphibian complement system and other immune responses to Bd. Finally, we suggest how a deeper understanding of amphibian immunity could enhance the conservation and management of amphibian species that are threatened by chytridiomycosis.
Collapse
Affiliation(s)
| | - Jamie Voyles
- Department of Biology, University of Nevada-Reno, Reno, Nevada, USA
| |
Collapse
|
13
|
Rollins-Smith LA. Global Amphibian Declines, Disease, and the Ongoing Battle between Batrachochytrium Fungi and the Immune System. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.178] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Louise A. Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|