1
|
Zhang M, Jiang S, Zhang W, Xiong Y, Jin S, Wang J, Qiao H, Fu H. Functional Study of the Role of the Methyl Farnesoate Epoxidase Gene in the Ovarian Development of Macrobrachium nipponense. Int J Mol Sci 2024; 25:7318. [PMID: 39000423 PMCID: PMC11242038 DOI: 10.3390/ijms25137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Methyl farnesoate epoxidase (MFE) is a gene encoding an enzyme related to the last step of juvenile hormone biosynthesis. Mn-MFE cDNA has a total length of 1695 bp and an open reading frame (ORF) length of 1482 bp, encoding 493 amino acids. Sequence analysis showed that its amino acid sequence has a PPGP hinge, an FGCG structural domain, and other structural domains specific to the P450 family of enzymes. Mn-MFE was most highly expressed in the hepatopancreas, followed by the ovary and gill, weakly expressed in heart and muscle tissue, and barely expressed in the eyestalk and cranial ganglion. Mn-MFE expression remained stable during the larval period, during which it mainly played a critical role in gonadal differentiation. Expression in the ovary was positively correlated and expression in the hepatopancreas was negatively correlated with ovarian development. In situ hybridization (ISH) showed that the signal was expressed in the oocyte, nucleus, cell membrane and follicular cells, and the intensity of expression was strongest at stage O-IV. The knockdown of Mn-MFE resulted in a significantly lower gonadosomatic index and percentage of ovaries past stage O-III compared to the control group. However, no differences were found in the cumulative frequency of molting between the experimental and control groups. Moreover, the analysis of ovarian tissue sections at the end of the experiment showed differences between groups in development speed but not in subcellular structure. These results demonstrate that Mn-MFE promotes the ovarian development of Macrobrachium nipponense adults but has no effect on molting.
Collapse
Affiliation(s)
- Mengying Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
| | - Sufei Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Jisheng Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
| | - Hui Qiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| |
Collapse
|
2
|
Yang H, Chen X, Li Z, Wu X, Zhou M, Zhang X, Liu Y, Sun Y, Zhu C, Guo Q, Chen T, Zhang J. Genome-Wide Analysis Indicates a Complete Prostaglandin Pathway from Synthesis to Inactivation in Pacific White Shrimp, Litopenaeus vannamei. Int J Mol Sci 2022; 23:ijms23031654. [PMID: 35163575 PMCID: PMC8835781 DOI: 10.3390/ijms23031654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins (PGs) play many essential roles in the development, immunity, metabolism, and reproduction of animals. In vertebrates, arachidonic acid (ARA) is generally converted to prostaglandin G2 (PGG2) and H2 (PGH2) by cyclooxygenase (COX); then, various biologically active PGs are produced through different downstream prostaglandin synthases (PGSs), while PGs are inactivated by 15-hydroxyprostaglandin dehydrogenase (PGDH). However, there is very limited knowledge of the PG biochemical pathways in invertebrates, particularly for crustaceans. In this study, nine genes involved in the prostaglandin pathway, including a COX, seven PGSs (PGES, PGES2, PGDS1/2, PGFS, AKR1C3, and TXA2S), and a PGDH were identified based on the Pacific white shrimp (Litopenaeus vannamei) genome, indicating a more complete PG pathway from synthesis to inactivation in crustaceans than in insects and mollusks. The homologous genes are conserved in amino acid sequences and structural domains, similar to those of related species. The expression patterns of these genes were further analyzed in a variety of tissues and developmental processes by RNA sequencing and quantitative real-time PCR. The mRNA expression of PGES was relatively stable in various tissues, while other genes were specifically expressed in distant tissues. During embryo development to post-larvae, COX, PGDS1, GDS2, and AKR1C3 expressions increased significantly, and increasing trends were also observed on PGES, PGDS2, and AKR1C3 at the post-molting stage. During the ovarian maturation, decreasing trends were found on PGES1, PGDS2, and PGDH in the hepatopancreas, but all gene expressions remained relatively stable in ovaries. In conclusion, this study provides basic knowledge for the synthesis and inactivation pathway of PG in crustaceans, which may contribute to the understanding of their regulatory mechanism in ontogenetic development and reproduction.
Collapse
Affiliation(s)
- Hao Yang
- Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.Y.); (Y.L.); (Y.S.)
| | - Xiaoli Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (C.Z.)
| | - Zhi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Z.L.); (X.W.); (M.Z.)
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Z.L.); (X.W.); (M.Z.)
| | - Mingyu Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Z.L.); (X.W.); (M.Z.)
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
| | - Yujie Liu
- Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.Y.); (Y.L.); (Y.S.)
| | - Yuying Sun
- Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.Y.); (Y.L.); (Y.S.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (C.Z.)
| | - Qiuhui Guo
- EasyATGC Limited Liability Company, Shenzhen 518081, China;
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
- Correspondence: (T.C.); (J.Z.)
| | - Jiquan Zhang
- Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.Y.); (Y.L.); (Y.S.)
- Correspondence: (T.C.); (J.Z.)
| |
Collapse
|
3
|
Ramachandran PD, Muniyappa MD, Kanapadinchareveetil S, Nair SN, Ajithkumar KG, Samraj S, Rajappan A, Varghese A, Kalarickal DC, Ravindran R, Ghosh S, Juliet S. Modulation of the PGE 2-Mediated Pathway in the Eclosion Blocking Effect of Flumethrin and Terpenoid Subfraction Isolated from Artemesia nilagirica in Rhipicephalus annulatus. Molecules 2021; 26:molecules26164905. [PMID: 34443500 PMCID: PMC8401071 DOI: 10.3390/molecules26164905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
Prostaglandins are a group of important cell-signaling molecules involved in the regulation of ovarian maturation, oocyte development, egg laying and associated behaviors in invertebrates. However, the presence of prostaglandin E2 (PGE2), the key enzymes for PGE2 biosynthesis and its interference by drugs were not investigated previously in the ovary of ticks. The present study was undertaken to assess the modulation of the PGE2-mediated pathway in the eclosion blocking effect of flumethrin and terpenoid subfraction isolated from Artemisia nilagirica in Rhipicephalus annulatus ticks. The acaricidal activities and chemical profiling of the terpenoid subfraction were performed. The localization of the cyclooxygenase1 (COX1) and prostaglandin E synthase (PGES) enzymes and the quantification of PGE2 in the ovaries of the ticks treated with methanol (control), flumethrin and terpenoid subfraction were also undertaken. In addition, the vitellogenin concentration in hemolymph was also assayed. Both flumethrin and the terpenoid subfraction of A. nilagirica elicited a concentration-dependent inhibition of fecundity and blocking of hatching of the eggs. The COX1 could not be detected in the ovaries of treated and control ticks, while there was no significant difference observed in the concentration of vitellogenin (Vg) in them. The presence of PGES in the oocytes of control ticks was confirmed while the immunoreactivities against PGES were absent in the vitellogenic oocytes of ticks treated with flumethrin and terpenoid subfraction. The levels of PGE2 were below the detection limit in the ovaries of the flumethrin-treated ticks, while it was significantly lower in the ovaries of the terpenoid subfraction-treated ticks. Hence, the prostaglandin E synthase and PGE2 were identified as very important mediators for the signaling pathway for ovarian maturation and oviposition in ticks. In addition, the key enzyme for prostaglandin biosynthesis, PGES and the receptors for PGE2 can be exploited as potential drug targets for tick control. The detection of PGES by immunohistochemistry and quantification of PGE2 by LC-MSMS can be employed as valuable tools for screening newer compounds for their eclosion blocking acaricidal effects.
Collapse
Affiliation(s)
- Panicker Devyani Ramachandran
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Mahesh Doddadasarahalli Muniyappa
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Sreelekha Kanapadinchareveetil
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Suresh Narayanan Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Karapparambu Gopalan Ajithkumar
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (K.G.A.); (A.V.); (D.C.K.)
| | - Sujith Samraj
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Anoopraj Rajappan
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India;
| | - Anju Varghese
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (K.G.A.); (A.V.); (D.C.K.)
| | - Deepa Chundayil Kalarickal
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (K.G.A.); (A.V.); (D.C.K.)
| | - Reghu Ravindran
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (K.G.A.); (A.V.); (D.C.K.)
- Correspondence: or ; Tel.: +91-9447713422
| | - Srikanta Ghosh
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, India;
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
- Center for Ethnopharmacology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India
| |
Collapse
|
4
|
Potential role of Methoprene-tolerant (Met) in methyl farnesoate-mediated vitellogenesis in the Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110524. [PMID: 33148510 DOI: 10.1016/j.cbpb.2020.110524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 11/24/2022]
Abstract
Methoprene-tolerant (Met) belongs to the basic helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) family of nuclear transcriptional regulators and is a leading candidate receptor for juvenile hormone (JH III) in insects. Methyl farnesoate (MF) is a de-epoxide form of JH III that regulates many developmental processes in crustaceans, including reproduction, molting, and morphogenesis, much like JH III in insects. In this study, the full-length cDNA for Met was cloned from the Chinese mitten crab (Eriocheir sinensis) (EsMet). The amino acid sequence of EsMet contains three conserved domains (bHLH, PAS-A, and PASB) characteristic of the bHLH-PAS family, having six conserved amino acid residues specifically responsible for JH or MF binding. Tissue distribution analysis revealed that EsMet mRNA is highly expressed in the hepatopancreas. In addition, EsMet and EsVg expression in the hepatopancreas were found to be significantly increased in early endogenous vitellogenic oocytes (stage II) during ovarian development, and the hemolymph MF titer was significantly increased in late exogenous vitellogenic oocytes (stage III), indicating that EsMet is involved in vitellogenesis regulation. In vitro, MF addition markedly upregulated EsMet and EsVg expression in hepatopancreatic tissue, but only EsVg was induced in ovarian tissue. In vivo, EsMet and EsVg expression in the hepatopancreas were both significantly and synchronously increased after MF injection, but not in the ovaries. In addition, EsMet and EsVg expression were upregulated in the hepatopancreas after eyestalk ablation, while only EsVg expression was induced in the ovaries. Thus, our results indicate that Met may act as a receptor for MF in MF-mediated vitellogenesis in crustaceans.
Collapse
|
5
|
Jayasankar V, Tomy S, Wilder MN. Insights on Molecular Mechanisms of Ovarian Development in Decapod Crustacea: Focus on Vitellogenesis-Stimulating Factors and Pathways. Front Endocrinol (Lausanne) 2020; 11:577925. [PMID: 33123094 PMCID: PMC7573297 DOI: 10.3389/fendo.2020.577925] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/18/2020] [Indexed: 01/20/2023] Open
Abstract
Vitellogenesis in crustaceans is an energy-consuming process. Though the underlying mechanisms of ovarian maturation in decapod Crustacea are still unclear, evidence indicates the process to be regulated by antagonistically-acting inhibitory and stimulating factors specifically originating from X-organ/sinus gland (XO/SG) complex. Among the reported neuromediators, neuropeptides belonging to the crustacean hyperglycemic hormone (CHH)-family have been studied extensively. The structure and dynamics of inhibitory action of vitellogenesis-inhibiting hormone (VIH) on vitellogenesis have been demonstrated in several species. Similarly, the stimulatory effects of other neuropeptides of the CHH-family on crustacean vitellogenesis have also been validated. Advancement in transcriptomic sequencing and comparative genome analysis has led to the discovery of a large number of neuromediators, peptides, and putative peptide receptors having pleiotropic and novel functions in decapod reproduction. Furthermore, differing research strategies have indicated that neurotransmitters and steroid hormones play an integrative role by stimulating neuropeptide secretion, thus demonstrating the complex intertwining of regulatory factors in reproduction. However, the molecular mechanisms by which the combinatorial effect of eyestalk hormones, neuromediators and other factors coordinate to regulate ovarian maturation remain elusive. These multifunctional substances are speculated to control ovarian maturation possibly via the autocrine/paracrine pathway by acting directly on the gonads or by indirectly exerting their stimulatory effects by triggering the release of a putative gonad stimulating factor from the thoracic ganglion. Acting through receptors, they possibly affect levels of cyclic nucleotides (cAMP and cGMP) and Ca2+ in target tissues leading to the regulation of vitellogenesis. The "stimulatory paradox" effect of eyestalk ablation on ovarian maturation continues to be exploited in commercial aquaculture operations, and is outweighed by the detrimental physiological effects of this procedure. In this regard, the development of efficient alternatives to eyestalk ablation based on scientific knowledge is a necessity. In this article, we focus principally on the signaling pathways of positive neuromediators and other factors regulating crustacean reproduction, providing an overview of their proposed receptor-mediated stimulatory mechanisms, intracellular signaling, and probable interaction with other hormonal signals. Finally, we provide insight into future research directions on crustacean reproduction as well as potential applications of such research to aquaculture technology development.
Collapse
Affiliation(s)
- Vidya Jayasankar
- Marine Biotechnology Division, Madras Research Centre, ICAR-Central Marine Fisheries Research Institute, Chennai, India
| | - Sherly Tomy
- Genetics and Biotechnology Unit, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Marcy N. Wilder
- Fisheries Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
- *Correspondence: Marcy N. Wilder
| |
Collapse
|