1
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
2
|
Taylor L, Chaudhary G, Jain G, Lowe A, Hupe A, Negishi A, Zeng Y, Ewoldt RH, Fudge DS. Mechanisms of gill-clogging by hagfish slime. J R Soc Interface 2023; 20:20220774. [PMID: 36987615 PMCID: PMC10050918 DOI: 10.1098/rsif.2022.0774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Hagfishes defend themselves from gill-breathing predators by producing large volumes of fibrous slime when attacked. The slime's effectiveness comes from its ability to clog predators' gills, but the mechanisms by which hagfish slime clogs are uncertain, especially given its remarkably dilute concentration of solids. We quantified the clogging performance of hagfish slime over a range of concentrations, measured the contributions of its mucous and thread components, and measured the effect of turbulent mixing on clogging. To assess the porous structure of hagfish slime, we used a custom device to measure its Darcy permeability. We show that hagfish slime clogs at extremely dilute concentrations like those found in native hagfish slime and displays clogging performance that is superior to three thickening agents. We report an extremely low Darcy permeability for hagfish slime, and an effective pore size of 10-300 nm. We also show that the mucous and thread components play distinct yet crucial roles, with mucus being responsible for effective clogging and low permeability and the threads imparting mechanical strength and retaining clogging function over time. Our results provide new insights into the mechanisms by which hagfish slime clogs gills and may inspire the development of ultra-soft materials with novel properties.
Collapse
Affiliation(s)
- Luke Taylor
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Gaurav Chaudhary
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Andrew Lowe
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Andre Hupe
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G-2W1
| | - Atsuko Negishi
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G-2W1
| | - Yu Zeng
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Randy H. Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G-2W1
| |
Collapse
|
3
|
Loo RL, Chan Q, Nicholson JK, Holmes E. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine- N-oxide. J Proteome Res 2022; 21:560-589. [PMID: 35142516 DOI: 10.1021/acs.jproteome.1c00851] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trimethylamine (TMA) and its N-oxide (TMAO) are ubiquitous in prokaryote and eukaryote organisms as well as in the environment, reflecting their fundamental importance in evolutionary biology, and their diverse biochemical functions. Both metabolites have multiple biological roles including cell-signaling. Much attention has focused on the significance of serum and urinary TMAO in cardiovascular disease risk, yet this is only one of the many facets of a deeper TMA-TMAO partnership that reflects the significance of these metabolites in multiple biological processes spanning animals, plants, bacteria, and fungi. We report on analytical methods for measuring TMA and TMAO and attempt to critically synthesize and map the global functions of TMA and TMAO in a systems biology framework.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Institute of Global Health Innovation, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, United Kingdom
| | - Elaine Holmes
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| |
Collapse
|
4
|
Fudge DS, Ferraro SN, Siwiecki SA, Hupé A, Jain G. A New Model of Hagfish Slime Mucous Vesicle Stabilization and Deployment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6681-6689. [PMID: 32470308 DOI: 10.1021/acs.langmuir.0c00639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hagfishes thwart predators by releasing large volumes of gill-clogging slime, which consists of mucus and silk-like fibers. The mucous fraction originates within gland mucous cells, which release numerous vesicles that swell and rupture when ejected into seawater. Several studies have examined the function of hagfish slime mucous vesicles in vitro, but a comprehensive model of their biophysics is lacking. Here, we tested the hypothesis that vesicles contain polyanionic glycoproteins stabilized by divalent cations and deploy in seawater via exchange of divalent for monovalent cations. We also tested the hypothesis that vesicle swelling and stabilization are governed by "Hofmeister effects". We found no evidence for either hypothesis. Our results show that hagfish mucous granules are only stabilized by multivalent anions, and pH titration experiments underscore these results. Our results lead us to the conclusion that the hagfish slime mucous gel is in fact polycationic in nature.
Collapse
Affiliation(s)
- Douglas S Fudge
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1-2W1, Canada
| | - Shannon N Ferraro
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1-2W1, Canada
| | - Sara A Siwiecki
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - André Hupé
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1-2W1, Canada
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| |
Collapse
|
5
|
Yancey PH. Cellular responses in marine animals to hydrostatic pressure. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:398-420. [DOI: 10.1002/jez.2354] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Paul H. Yancey
- Department of BiologyWhitman CollegeWalla Walla Washington
| |
Collapse
|
6
|
Knight K. Methylamines keep hagfish slime thread skeins together. J Exp Biol 2019. [DOI: 10.1242/jeb.218107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|