1
|
Zimmer AM. Ammonia excretion by the fish gill: discoveries and ideas that shaped our current understanding. J Comp Physiol B 2024; 194:697-715. [PMID: 38849577 DOI: 10.1007/s00360-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
The fish gill serves many physiological functions, among which is the excretion of ammonia, the primary nitrogenous waste in most fishes. Although it is the end-product of nitrogen metabolism, ammonia serves many physiological functions including acting as an acid equivalent and as a counter-ion in mechanisms of ion regulation. Our current understanding of the mechanisms of ammonia excretion have been influenced by classic experimental work, clever mechanistic approaches, and modern molecular and genetic techniques. In this review, I will overview the history of the study of ammonia excretion by the gills of fishes, highlighting the important advancements that have shaped this field with a nearly 100-year history. The developmental and evolutionary implications of an ammonia and gill-dominated nitrogen regulation strategy in most fishes will also be discussed. Throughout the review, I point to areas in which more work is needed to push forward this field of research that continues to produce novel insights and discoveries that will undoubtedly shape our overall understanding of fish physiology.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, Saint John, New Brunswick, E2L 4L5, Canada.
| |
Collapse
|
2
|
Kovac A, Goss GG. Cellular mechanisms of ion and acid-base regulation in teleost gill ionocytes. J Comp Physiol B 2024; 194:645-662. [PMID: 38761226 DOI: 10.1007/s00360-024-01560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/20/2024]
Abstract
The mechanism(s) of sodium, chloride and pH regulation in teleost fishes has been the subject of intense interest for researchers over the past 100 years. The primary organ responsible for ionoregulatory homeostasis is the gill, and more specifically, gill ionocytes. Building on the theoretical and experimental research of the past, recent advances in molecular and cellular techniques in the past two decades have allowed for substantial advances in our understanding of mechanisms involved. With an increased diversity of teleost species and environmental conditions being investigated, it has become apparent that there are multiple strategies and mechanisms employed to achieve ion and acid-base homeostasis. This review will cover the historical developments in our understanding of the teleost fish gill, highlight some of the recent advances and conflicting information in our understanding of ionocyte function, and serve to identify areas that require further investigation to improve our understanding of complex cellular and molecular machineries involved in iono- and acid-base regulation.
Collapse
Affiliation(s)
- Anthony Kovac
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
3
|
Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes (Basel) 2024; 15:726. [PMID: 38927661 PMCID: PMC11202958 DOI: 10.3390/genes15060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.
Collapse
Affiliation(s)
- Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Maria N. Ruzina
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Olga R. Emelianova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Sergeev
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Evgeniya A. Chikurova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
| |
Collapse
|
4
|
Tresguerres M, Kwan GT, Weinrauch A. Evolving views of ionic, osmotic and acid-base regulation in aquatic animals. J Exp Biol 2023; 226:jeb245747. [PMID: 37522267 DOI: 10.1242/jeb.245747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The regulation of ionic, osmotic and acid-base (IOAB) conditions in biological fluids is among the most fundamental functions in all organisms; being surrounded by water uniquely shapes the IOAB regulatory strategies of water-breathing animals. Throughout its centennial history, Journal of Experimental Biology has established itself as a premier venue for publication of comparative, environmental and evolutionary studies on IOAB regulation. This Review provides a synopsis of IOAB regulation in aquatic animals, some of the most significant research milestones in the field, and evolving views about the underlying cellular mechanisms and their evolutionary implications. It also identifies promising areas for future research and proposes ideas for enhancing the impact of aquatic IOAB research.
Collapse
Affiliation(s)
- Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Garfield T Kwan
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Alyssa Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M5, Canada
| |
Collapse
|
5
|
Genome-wide identification of the NHE gene family in Coilia nasus and its response to salinity challenge and ammonia stress. BMC Genomics 2022; 23:526. [PMID: 35858854 PMCID: PMC9297642 DOI: 10.1186/s12864-022-08761-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background In aquatic environments, pH, salinity, and ammonia concentration are extremely important for aquatic animals. NHE is a two-way ion exchange carrier protein, which can transport Na+ into cells and exchange out H+, and also plays key roles in regulating intracellular pH, osmotic pressure, and ammonia concentration. Results In the present study, ten NHEs, the entire NHE gene family, were identified from Coilia nasus genome and systemically analyzed via phylogenetic, structural, and synteny analysis. Different expression patterns of C. nasus NHEs in multiple tissues indicated that expression profiles of NHE genes displayed tissue-specific. Expression patterns of C. nasus NHEs were related to ammonia excretion during multiple embryonic development stages. To explore the potential functions on salinity challenge and ammonia stress, expression levels of ten NHEs were detected in C. nasus gills under hypotonic stress, hypertonic stress, and ammonia stress. Expression levels of all NHEs were upregulated during hypotonic stress, while they were downregulated during hypertonic stress. NHE2 and NHE3 displayed higher expression levels in C. nasus larvae and juvenile gills under ammonia stress. Conclusions Our study revealed that NHE genes played distinct roles in embryonic development, salinity stress, and ammonia exposure. Syntenic analysis showed significant difference between stenohaline fish and euryhaline fishes. Our findings will provide insight into effects of C. nasus NHE gene family on ion transport and ammonia tolerance and be beneficial for healthy aquaculture of C. nasus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08761-9.
Collapse
|
6
|
Zimmer AM, Mandic M, Yew HM, Kunert E, Pan YK, Ha J, Kwong RWM, Gilmour KM, Perry SF. Use of a carbonic anhydrase Ca17a knockout to investigate mechanisms of ion uptake in zebrafish ( Danio rerio). Am J Physiol Regul Integr Comp Physiol 2021; 320:R55-R68. [PMID: 33085911 DOI: 10.1152/ajpregu.00215.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In fishes, branchial cytosolic carbonic anhydrase (CA) plays an important role in ion and acid-base regulation. The Ca17a isoform in zebrafish (Danio rerio) is expressed abundantly in Na+-absorbing/H+-secreting H+-ATPase-rich (HR) cells. The present study aimed to identify the role of Ca17a in ion and acid-base regulation across life stages using CRISPR/Cas9 gene editing. However, in preliminary experiments, we established that ca17a knockout is lethal with ca17a-/- mutants exhibiting a significant decrease in survival beginning at ∼12 days postfertilization (dpf) and with no individuals surviving past 19 dpf. Based on these findings, we hypothesized that ca17a-/- mutants would display alterations in ion and acid-base balance and that these physiological disturbances might underlie their early demise. Na+ uptake rates were significantly increased by up to 300% in homozygous mutants compared with wild-type individuals at 4 and 9 dpf; however, whole body Na+ content remained constant. While Cl- uptake was significantly reduced in ca17a-/- mutants, Cl- content was unaffected. Reduction of CA activity by Ca17a morpholino knockdown or ethoxzolamide treatments similarly reduced Cl- uptake, implicating Ca17a in the mechanism of Cl- uptake by larval zebrafish. H+ secretion, O2 consumption, CO2 excretion, and ammonia excretion were generally unaltered in ca17a-/- mutants. In conclusion, while the loss of Ca17a caused marked changes in ion uptake rates, providing strong evidence for a Ca17a-dependent Cl- uptake mechanism, the underlying causes of the lethality of this mutation in zebrafish remain unclear.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Milica Mandic
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hong Meng Yew
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Emma Kunert
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yihang K Pan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jimmy Ha
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Shir-Mohammadi K, Perry SF. Expression of ion transport genes in ionocytes isolated from larval zebrafish ( Danio rerio) exposed to acidic or Na +-deficient water. Am J Physiol Regul Integr Comp Physiol 2020; 319:R412-R427. [PMID: 32755465 DOI: 10.1152/ajpregu.00095.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In zebrafish (Danio rerio), a specific ionocyte subtype, the H+-ATPase-rich (HR) cell, is presumed to be a significant site of transepithelial Na+ uptake/acid secretion. During acclimation to environments differing in ionic composition or pH, ionic and acid-base regulations are achieved by adjustments to the activity level of HR cell ion transport proteins. In previous studies, the quantitative assessment of mRNA levels for genes involved in ionic and acid-base regulations relied on measurements using homogenates derived from the whole body (larvae) or the gill (adult). Such studies cannot distinguish whether any differences in gene expression arise from adjustments of ionocyte subtype numbers or transcriptional regulation specifically within individual ionocytes. The goal of the present study was to use fluorescence-activated cell sorting to separate the HR cells from other cellular subpopulations to facilitate the measurement of gene expression of HR cell-specific transporters and enzymes from larvae exposed to low pH (pH 4.0) or low Na+ (5 μM) conditions. The data demonstrate that treatment of larvae with acidic water for 4 days postfertilization caused cell-specific increases in H+-ATPase (atp6v1aa), ca17a, ca15a, nhe3b, and rhcgb mRNA in addition to increases in mRNA linked to cell proliferation. In fish exposed to low Na+, expression of nhe3b and rhcgb was increased owing to HR cell-specific regulation and elevated numbers of HR cells. Thus, the results of this study demonstrate that acclimation to low pH or low Na+ environmental conditions is facilitated by HR cell-specific transcriptional control and by HR cell proliferation.
Collapse
Affiliation(s)
| | - S F Perry
- Department of Biology, University of Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Wichmann L, Althaus M. Evolution of epithelial sodium channels: current concepts and hypotheses. Am J Physiol Regul Integr Comp Physiol 2020; 319:R387-R400. [PMID: 32783689 DOI: 10.1152/ajpregu.00144.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The conquest of freshwater and terrestrial habitats was a key event during vertebrate evolution. Occupation of low-salinity and dry environments required significant osmoregulatory adaptations enabling stable ion and water homeostasis. Sodium is one of the most important ions within the extracellular liquid of vertebrates, and molecular machinery for urinary reabsorption of this electrolyte is critical for the maintenance of body osmoregulation. Key ion channels involved in the fine-tuning of sodium homeostasis in tetrapod vertebrates are epithelial sodium channels (ENaCs), which allow the selective influx of sodium ions across the apical membrane of epithelial cells lining the distal nephron or the colon. Furthermore, ENaC-mediated sodium absorption across tetrapod lung epithelia is crucial for the control of liquid volumes lining the pulmonary surfaces. ENaCs are vertebrate-specific members of the degenerin/ENaC family of cation channels; however, there is limited knowledge on the evolution of ENaC within this ion channel family. This review outlines current concepts and hypotheses on ENaC phylogeny and discusses the emergence of regulation-defining sequence motifs in the context of osmoregulatory adaptations during tetrapod terrestrialization. In light of the distinct regulation and expression of ENaC isoforms in tetrapod vertebrates, we discuss the potential significance of ENaC orthologs in osmoregulation of fishes as well as the putative fates of atypical channel isoforms in mammals. We hypothesize that ancestral proton-sensitive ENaC orthologs might have aided the osmoregulatory adaptation to freshwater environments whereas channel regulation by proteases evolved as a molecular adaptation to lung liquid homeostasis in terrestrial tetrapods.
Collapse
Affiliation(s)
- Lukas Wichmann
- Institute for Animal Physiology, Justus Liebig University, Giessen, Germany
| | - Mike Althaus
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| |
Collapse
|
9
|
Yew HM, Zimmer AM, Perry SF. Assessing intracellular pH regulation in H +-ATPase-rich ionocytes in zebrafish larvae using in vivo ratiometric imaging. J Exp Biol 2020; 223:jeb212928. [PMID: 32029462 DOI: 10.1242/jeb.212928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
The H+-ATPase-rich (HR) cells of zebrafish larvae are a sub-type of ion-transporting cell located on the yolk sac epithelium that are responsible for Na+ uptake and H+ extrusion. Current models of HR cell ion transport mechanisms in zebrafish larvae are well established, but little is known about the involvement of the various ion transport pathways in regulating intracellular acid-base status. Here, a ratiometric imaging technique was developed and validated to monitor intracellular pH (pHi) continuously in larval zebrafish HR cells in vivo Gene knockdown or CRISPR/Cas9 knockout approaches were used to evaluate the roles of the two principal apical membrane acid excretory pathways, the Na+/H+ exchanger (NHE3b; slc9a3.2) and the H+-ATPase (atpv1aa). Additionally, the role of HR cell cytosolic carbonic anhydrase (CAc) was investigated because of its presumed role in providing H+ for Na+/H+ exchange and H+-ATPase. The temporal pattern and extent of intracellular acidification during exposure of fish to 1% CO2 and the extent of post-CO2 alkalisation were altered markedly in fish experiencing knockdown/knockout of CAc, NHE3b or H+-ATPase. Although there were slight differences among the three knockdown/knockout experiments, the typical response was a greater degree of intracellular acidification during CO2 exposure and a reduced capacity to restore pHi to baseline levels post-hypercapnia. The metabolic alkalosis and subsequent acidification associated with 20 mmol l-1 NH4Cl exposure and its washout were largely unaffected by gene knockdown. Overall, the results suggest markedly different mechanisms of intracellular acid-base regulation in zebrafish HR cells depending on the nature of the acid-base disturbance.
Collapse
Affiliation(s)
- H M Yew
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON KIN 6N5, Canada
| | - A M Zimmer
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON KIN 6N5, Canada
| | - S F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON KIN 6N5, Canada
| |
Collapse
|