1
|
Prestes JG, Carneiro L, Miiller NOR, Neundorf AKA, Pedroso CR, Braga RR, Sousa R, Vitule JRS. A systematic review of invasive non-native freshwater bivalves. Biol Rev Camb Philos Soc 2024; 99:2082-2107. [PMID: 38973333 DOI: 10.1111/brv.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
The introduction of invasive species has become an increasing environmental problem in freshwater ecosystems due to the high economic and ecological impacts it has generated. This systematic review covers publications from 2010 to 2020, focusing on non-native invasive freshwater bivalves, a particularly relevant and widespread introduced taxonomic group in fresh waters. We collected information on the most studied species, the main objectives of the studies, their geographical location, study duration, and type of research. Furthermore, we focused on assessing the levels of ecological evidence presented, the type of interactions of non-native bivalves with other organisms and the classification of their impacts. A total of 397 publications were retrieved. The studies addressed a total of 17 species of non-native freshwater bivalves; however, most publications focused on the species Corbicula fluminea and Dreissena polymorpha, which are recognised for their widespread distribution and extensive negative impacts. Many other non-native invasive bivalve species have been poorly studied. A high geographical bias was also present, with a considerable lack of studies in developing countries. The most frequent studies had shorter temporal periods, smaller spatial extents, and more observational data, were field-based, and usually evaluated possible ecological impacts at the individual and population levels. There were 94 publications documenting discernible impacts according to the Environmental Impact Classification for Alien Taxa (EICAT). However, 41 of these publications did not provide sufficient data to determine an impact. The most common effects of invasive bivalves on ecosystems were structural alterations, and chemical and physical changes, which are anticipated due to their role as ecosystem engineers. Despite a considerable number of studies in the field and advances in our understanding of some species over the past decade, long-term data and large-scale studies are still needed to understand better the impacts, particularly at the community and ecosystem levels and in less-studied geographic regions. The widespread distribution of several non-native freshwater bivalves, their ongoing introductions, and high ecological and economic impacts demand continued research. Systematic reviews such as this are essential for identifying knowledge gaps and guiding future research to enable a more complete understanding of the ecological implications of invasive bivalves, and the development of effective management strategies.
Collapse
Affiliation(s)
- Juliani Giselli Prestes
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Laís Carneiro
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Natali Oliva Roman Miiller
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Ananda Karla Alves Neundorf
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Laboratory of Adaptive Biology, Department of Cell Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Clemerson Richard Pedroso
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Raul Rennó Braga
- Department of Animal and Plant Biology, State University of Londrina, Londrina, 86057-970, Brazil
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| | - Jean Ricardo Simões Vitule
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
| |
Collapse
|
2
|
Cushway KC, Geist J, Schwalb AN. Surviving global change: a review of the impacts of drought and dewatering on freshwater mussels. Biol Rev Camb Philos Soc 2024. [PMID: 39262112 DOI: 10.1111/brv.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The increase in the frequency and intensity of droughts and heatwaves caused by climate change poses a major threat to biodiversity. In aquatic systems, sedentary species such as freshwater mussels are generally considered more vulnerable to changes in habitat conditions than mobile species such as fish. As mussels provide important ecosystem services, understanding the impacts of drought on freshwater mussels is of particular importance for the management of overall functioning of aquatic ecosystems. We used a comprehensive literature search to provide a systematic overview of direct and indirect effects of drought on freshwater mussels (Bivalvia: Unionida) and an evaluation of mitigation strategies. We found that drought studies were concentrated mostly in the USA, with a focus on the Unionidae family. Topics ranged from the physiological effects of high temperatures, emersion, and hypoxia/anoxia to behavioural and reproductive consequences of drought and the implications for biotic interactions and ecosystem services. Studies spanned all levels of biological organization, from individual responses to population- and community-level impacts and ecosystem-wide effects. We identified several knowledge gaps, including a paucity of trait-based evaluation of drought consequences, limited understanding of thermal and desiccation tolerance at the species level, and the synergistic effects of multiple drought stressors on mussels. Although we found many studies provided suggestions concerning management of populations, habitat conditions, and anthropogenic water use, a systematic approach and testing of recommended mitigation strategies is largely lacking, creating challenges for managers aiming to conserve freshwater mussel communities and populations in light of climate change.
Collapse
Affiliation(s)
- Kiara C Cushway
- Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Juergen Geist
- Technical University Munich, Mühlenweg 18-22, Freising, 85354, Germany
| | - Astrid N Schwalb
- Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| |
Collapse
|
3
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
4
|
Léger A, Cormier SB, Blanchard A, Menail HA, Pichaud N. Investigating the thermal sensitivity of key enzymes involved in the energetic metabolism of three insect species. J Exp Biol 2024; 227:jeb247221. [PMID: 38680096 DOI: 10.1242/jeb.247221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The metabolic responses of insects to high temperatures have been linked to their mitochondrial substrate oxidation capacity. However, the mechanism behind this mitochondrial flexibility is not well understood. Here, we used three insect species with different thermal tolerances (the honey bee, Apis mellifera; the fruit fly, Drosophila melanogaster; and the potato beetle, Leptinotarsa decemlineata) to characterize the thermal sensitivity of different metabolic enzymes. Specifically, we measured activity of enzymes involved in glycolysis (hexokinase, HK; pyruvate kinase, PK; and lactate dehydrogenase, LDH), pyruvate oxidation and the tricarboxylic acid cycle (pyruvate dehydrogenase, PDH; citrate synthase, CS; malate dehydrogenase, MDH; and aspartate aminotransferase, AAT), and the electron transport system (Complex I, CI; Complex II, CII; mitochondrial glycerol-3-phosphate dehydrogenase, mG3PDH; proline dehydrogenase, ProDH; and Complex IV, CIV), as well as that of ATP synthase (CV) at 18, 24, 30, 36, 42 and 45°C. Our results show that at high temperature, all three species have significantly increased activity of enzymes linked to FADH2 oxidation, specifically CII and mG3PDH. In fruit flies and honey bees, this coincides with a significant decrease of PDH and CS activity, respectively, that would limit NADH production. This is in line with the switch from NADH-linked substrates to FADH2-linked substrates previously observed with mitochondrial oxygen consumption. Thus, we demonstrate that even though the three insect species have a different metabolic regulation, a similar response to high temperature involving CII and mG3PDH is observed, denoting the importance of these proteins for thermal tolerance in insects.
Collapse
Affiliation(s)
- Adèle Léger
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Simon B Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Arianne Blanchard
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Hichem A Menail
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| |
Collapse
|
5
|
Gu S, Qi T, Rohr JR, Liu X. Meta-analysis reveals less sensitivity of non-native animals than natives to extreme weather worldwide. Nat Ecol Evol 2023; 7:2004-2027. [PMID: 37932385 DOI: 10.1038/s41559-023-02235-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023]
Abstract
Extreme weather events (EWEs; for example, heatwaves, cold spells, storms, floods and droughts) and non-native species invasions are two major threats to global biodiversity and are increasing in both frequency and consequences. Here we synthesize 443 studies and apply multilevel mixed-effects metaregression analyses to compare the responses of 187 non-native and 1,852 native animal species across terrestrial, freshwater and marine ecosystems to different types of EWE. Our results show that marine animals, regardless of whether they are non-native or native, are overall insensitive to EWEs, except for negative effects of heatwaves on native mollusks, corals and anemone. By contrast, terrestrial and freshwater non-native animals are only adversely affected by heatwaves and storms, respectively, whereas native animals negatively respond to heatwaves, cold spells and droughts in terrestrial ecosystems and are vulnerable to most EWEs except cold spells in freshwater ecosystems. On average, non-native animals displayed low abundance in terrestrial ecosystems, and decreased body condition and life history traits in freshwater ecosystems, whereas native animals displayed declines in body condition, life history traits, abundance, distribution and recovery in terrestrial ecosystems, and community structure in freshwater ecosystems. By identifying areas with high overlap between EWEs and EWE-tolerant non-native species, we also provide locations where native biodiversity might be adversely affected by their joint effects and where EWEs might facilitate the establishment and/or spread of non-native species under continuing global change.
Collapse
Affiliation(s)
- Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Roussel D, Janillon S, Teulier L, Pichaud N. Succinate oxidation rescues mitochondrial ATP synthesis at high temperature in Drosophila melanogaster. FEBS Lett 2023; 597:2221-2229. [PMID: 37463836 DOI: 10.1002/1873-3468.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Decreased NADH-induced and increased reduced FADH2 -induced respiration rates at high temperatures are associated with thermal tolerance in Drosophila. Here, we determined whether this change was associated with adjustments of adenosine triphosphate (ATP) production rate and coupling efficiency (ATP/O) in Drosophila melanogaster. We show that decreased pyruvate + malate oxidation at 35°C is associated with a collapse of ATP synthesis and a drop in ATP/O ratio. However, adding succinate triggered a full compensation of both oxygen consumption and ATP synthesis rates at this high temperature. Addition of glycerol-3-phosphate (G3P) led to a huge increase in respiration with no further advantage in terms of ATP production. We conclude that succinate is the only alternative substrate able to compensate both oxygen consumption and ATP production rates during oxidative phosphorylation at high temperature, which has important implications for thermal adaptation.
Collapse
Affiliation(s)
- Damien Roussel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Sonia Janillon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5558 LBBE, Villeurbanne, France
| | - Loïc Teulier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, New Brunswick, Canada
| |
Collapse
|
7
|
Ørsted M, Jørgensen LB, Overgaard J. Finding the right thermal limit: a framework to reconcile ecological, physiological and methodological aspects of CTmax in ectotherms. J Exp Biol 2022; 225:277015. [DOI: 10.1242/jeb.244514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Upper thermal limits (CTmax) are frequently used to parameterize the fundamental niche of ectothermic animals and to infer biogeographical distribution limits under current and future climate scenarios. However, there is considerable debate associated with the methodological, ecological and physiological definitions of CTmax. The recent (re)introduction of the thermal death time (TDT) model has reconciled some of these issues and now offers a solid mathematical foundation to model CTmax by considering both intensity and duration of thermal stress. Nevertheless, the physiological origin and boundaries of this temperature–duration model remain unexplored. Supported by empirical data, we here outline a reconciling framework that integrates the TDT model, which operates at stressful temperatures, with the classic thermal performance curve (TPC) that typically describes biological functions at permissive temperatures. Further, we discuss how the TDT model is founded on a balance between disruptive and regenerative biological processes that ultimately defines a critical boundary temperature (Tc) separating the TDT and TPC models. Collectively, this framework allows inclusion of both repair and accumulation of heat stress, and therefore also offers a consistent conceptual approach to understand the impact of high temperature under fluctuating thermal conditions. Further, this reconciling framework allows improved experimental designs to understand the physiological underpinnings and ecological consequences of ectotherm heat tolerance.
Collapse
Affiliation(s)
- Michael Ørsted
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| | | | - Johannes Overgaard
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| |
Collapse
|
8
|
Wu YY, Cheng CX, Yang L, Ye QQ, Li WH, Jiang JY. Characterization of Gut Microbiome in the Mud Snail Cipangopaludina cathayensis in Response to High-Temperature Stress. Animals (Basel) 2022; 12:ani12182361. [PMID: 36139220 PMCID: PMC9494996 DOI: 10.3390/ani12182361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary This study investigated the effects of high-temperature stress on the intestinal microbiome of Cipangopaludina cathayensis. High-temperature exposure significantly changed the intestinal microbiota structure of C. cathayensis. The relative abundance of putatively beneficial bacteria decreased, whereas the relative abundance of putatively pathogenic bacteria increased after thermal stress. Consistent with the trends of change in the intestinal microbiota, the high-temperature treatment inhibited some carbohydrate metabolism pathways and induced certain disease-related pathways. Thermal stress disrupts the homeostasis of gut microbiota, which may lead to disease outbreak in C. cathayensis. Abstract The mud snail Cipangopaludina cathayensis is a widely distributed species in China. Particularly in Guangxi province, mud snail farming contributes significantly to the economic development. However, global warming in recent decades poses a serious threat to global aquaculture production. The rising water temperature is harmful to aquatic animals. The present study explored the effects of high temperature on the intestinal microbiota of C. cathayensis. Snail intestinal samples were collected from the control and high-temperature groups on days 3 and 7 to determine the gut microbiota composition and diversity. Gut bacterial community composition was investigated using high-throughput sequencing of the V3–V4 region of bacterial 16S rRNA genes. Our results suggested that thermal stress altered the gut microbiome structure of C. cathayensis. At the phylum level, Proteobacteria, Bacteroidetes, and Firmicutes were dominant in C. cathayensis gut microbiota. The T2 treatment (32 ± 1 °C, day 7) significantly decreased the relative abundance of Firmicutes, Actinobacteria, and Deinococcus-Thermus. In T2, the abundance of several genera of putatively beneficial bacteria (Pseudomonas, Aeromonas, Rhodobacter, and Bacteroides) decreased, whereas the abundance of Halomonas—a pathogenic bacterial genus—increased. The functional prediction results indicated that T2 treatment inhibited some carbohydrate metabolism pathways and induced certain disease-related pathways (e.g., those related to systemic lupus erythematosus, Vibrio cholerae infection, hypertrophic cardiomyopathy, and shigellosis). Thus, high temperature profoundly affected the community structure and function of C. cathayensis gut microbiota. The results provide insights into the mechanisms associated with response of C. cathayensis intestinal microbiota to global warming.
Collapse
Affiliation(s)
- Yang-Yang Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
| | - Chun-Xing Cheng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
| | - Liu Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
| | - Quan-Qing Ye
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
| | - Wen-Hong Li
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China
- Correspondence: (W.-H.L.); (J.-Y.J.); Tel.: +86-159-9447-9761 (W.-H.L.); +86-183-7830-1237 (J.-Y.J.)
| | - Jiao-Yun Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- Correspondence: (W.-H.L.); (J.-Y.J.); Tel.: +86-159-9447-9761 (W.-H.L.); +86-183-7830-1237 (J.-Y.J.)
| |
Collapse
|
9
|
Menail HA, Cormier SB, Ben Youssef M, Jørgensen LB, Vickruck JL, Morin P, Boudreau LH, Pichaud N. Flexible Thermal Sensitivity of Mitochondrial Oxygen Consumption and Substrate Oxidation in Flying Insect Species. Front Physiol 2022; 13:897174. [PMID: 35547573 PMCID: PMC9081799 DOI: 10.3389/fphys.2022.897174] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Mitochondria have been suggested to be paramount for temperature adaptation in insects. Considering the large range of environments colonized by this taxon, we hypothesized that species surviving large temperature changes would be those with the most flexible mitochondria. We thus investigated the responses of mitochondrial oxidative phosphorylation (OXPHOS) to temperature in three flying insects: the honeybee (Apis mellifera carnica), the fruit fly (Drosophila melanogaster) and the Colorado potato beetle (Leptinotarsa decemlineata). Specifically, we measured oxygen consumption in permeabilized flight muscles of these species at 6, 12, 18, 24, 30, 36, 42 and 45°C, sequentially using complex I substrates, proline, succinate, and glycerol-3-phosphate (G3P). Complex I respiration rates (CI-OXPHOS) were very sensitive to temperature in honeybees and fruit flies with high oxygen consumption at mid-range temperatures but a sharp decline at high temperatures. Proline oxidation triggers a major increase in respiration only in potato beetles, following the same pattern as CI-OXPHOS for honeybees and fruit flies. Moreover, both succinate and G3P oxidation allowed an important increase in respiration at high temperatures in honeybees and fruit flies (and to a lesser extent in potato beetles). However, when reaching 45°C, this G3P-induced respiration rate dropped dramatically in fruit flies. These results demonstrate that mitochondrial functions are more resilient to high temperatures in honeybees compared to fruit flies. They also indicate an important but species-specific mitochondrial flexibility for substrate oxidation to sustain high oxygen consumption levels at high temperatures and suggest previously unknown adaptive mechanisms of flying insects’ mitochondria to temperature.
Collapse
Affiliation(s)
- Hichem A Menail
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Simon B Cormier
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Mariem Ben Youssef
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | | | - Jess L Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Pier Morin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Luc H Boudreau
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|
10
|
Hraoui G, Breton S, Miron G, Boudreau LH, Hunter-Manseau F, Pichaud N. Mitochondrial responses towards intermittent heat shocks in the eastern oyster, Crassostrea virginica. J Exp Biol 2021; 224:272029. [PMID: 34401903 DOI: 10.1242/jeb.242745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Frequent heat waves caused by climate change can give rise to physiological stress in many animals, particularly in sessile ectotherms such as bivalves. Most studies characterizing thermal stress in bivalves focus on evaluating the responses to a single stress event. This does not accurately reflect the reality faced by bivalves, which are often subject to intermittent heat waves. Here, we investigated the effect of intermittent heat stress on mitochondrial functions of the eastern oyster, Crassostrea virginica, which play a key role in setting the thermal tolerance of ectotherms. Specifically, we measured changes in mitochondrial oxygen consumption and H2O2 emission rates before, during and after intermittent 7.5°C heat shocks in oysters acclimated to 15 and 22.5°C. Our results showed that oxygen consumption was impaired following the first heat shock at both acclimation temperatures. After the second heat shock, results for oysters acclimated to 15°C indicated a return to normal. However, oysters acclimated to 22.5°C struggled more with the compounding effects of intermittent heat shocks as denoted by an increased contribution of FAD-linked substrates to mitochondrial respiration as well as high levels of H2O2 emission rates. However, both acclimated populations showed signs of potential recovery 10 days after the second heat shock, reflecting a surprising resilience to heat waves by C. virginica. Thus, this study highlights the important role of acclimation in the oyster's capacity to weather intermittent heat shock.
Collapse
Affiliation(s)
- Georges Hraoui
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada, H2X 1Y4.,Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| | - Sophie Breton
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| | - Gilles Miron
- Department of Biology, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, Canada, E1C 8X3
| | - Florence Hunter-Manseau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, Canada, E1C 8X3
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, Canada, E1C 8X3
| |
Collapse
|
11
|
Jørgensen LB, Overgaard J, Hunter-Manseau F, Pichaud N. Dramatic changes in mitochondrial substrate use at critically high temperatures: a comparative study using Drosophila. J Exp Biol 2021; 224:jeb.240960. [PMID: 33563650 DOI: 10.1242/jeb.240960] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
Ectotherm thermal tolerance is critical to species distribution, but at present the physiological underpinnings of heat tolerance remain poorly understood. Mitochondrial function is perturbed at critically high temperatures in some ectotherms, including insects, suggesting that heat tolerance of these animals is linked to failure of oxidative phosphorylation (OXPHOS) and/or ATP production. To test this hypothesis, we measured mitochondrial oxygen consumption rate in six Drosophila species with different heat tolerance using high-resolution respirometry. Using a substrate-uncoupler-inhibitor titration protocol, we examined specific steps of the electron transport system to study how temperatures below, bracketing and above organismal heat limits affect mitochondrial function and substrate oxidation. At benign temperatures (19 and 30°C), complex I-supported respiration (CI-OXPHOS) was the most significant contributor to maximal OXPHOS. At higher temperatures (34, 38, 42 and 46°C), CI-OXPHOS decreased considerably, ultimately to very low levels at 42 and 46°C. The enzymatic catalytic capacity of complex I was intact across all temperatures and accordingly the decreased CI-OXPHOS is unlikely to be caused directly by hyperthermic denaturation/inactivation of complex I. Despite the reduction in CI-OXPHOS, maximal OXPHOS capacity was maintained in all species, through oxidation of alternative substrates - proline, succinate and, particularly, glycerol-3-phosphate - suggesting important mitochondrial flexibility at temperatures exceeding the organismal heat limit. Interestingly, this failure of CI-OXPHOS and compensatory oxidation of alternative substrates occurred at temperatures that correlated with species heat tolerance, such that heat-tolerant species could defend 'normal' mitochondrial function at higher temperatures than sensitive species. Future studies should investigate why CI-OXPHOS is perturbed and how this potentially affects ATP production rates.
Collapse
Affiliation(s)
| | - Johannes Overgaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Florence Hunter-Manseau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| |
Collapse
|