1
|
Kilgour DAV, Romero LM, Reed JM. Feather corticosterone is lower in translocated and historical populations of the endangered Laysan duck ( Anas laysanensis). Proc Biol Sci 2024; 291:20240330. [PMID: 38772417 DOI: 10.1098/rspb.2024.0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/23/2024] Open
Abstract
Identifying reliable bioindicators of population status is a central goal of conservation physiology. Physiological stress measures are often used as metrics of individual health and can assist in managing endangered species if linked to fitness traits. We analysed feather corticosterone, a cumulative physiological stress metric, of individuals from historical, translocated, and source populations of an endangered endemic Hawaiian bird, the Laysan duck (Anas laysanensis). We hypothesized that feather corticosterone would reflect the improved reproduction and survival rates observed in populations translocated to Midway and Kure Atolls from Laysan Island. We also predicted less physiological stress in historical Laysan birds collected before ecological conditions deteriorated and the population bottleneck. All hypotheses were supported: we found lower feather corticosterone in the translocated populations and historical samples than in those from recent Laysan samples. This suggests that current Laysan birds are experiencing greater physiological stress than historical Laysan and recently translocated birds. Our initial analysis suggests that feather corticosterone may be an indicator of population status and could be used as a non-invasive physiological monitoring tool for this species with further validation. Furthermore, these preliminary results, combined with published demographic data, suggest that current Laysan conditions may not be optimal for this species.
Collapse
Affiliation(s)
| | | | - J Michael Reed
- Department of Biology, Tufts University , , MA 02155, USA
| |
Collapse
|
2
|
Rogers EJ, Gerson AR. Water restriction increases oxidation of endogenous amino acids in house sparrows (Passer domesticus). J Exp Biol 2024; 227:jeb246483. [PMID: 38380522 PMCID: PMC11093224 DOI: 10.1242/jeb.246483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Animals can cope with dehydration in a myriad of ways, both behaviorally and physiologically. The oxidation of protein produces more metabolic water per kilojoule than that of fat or carbohydrate, and it is well established that birds increase protein catabolism in response to high rates of water loss. However, the fate of amino acids mobilized in response to water restriction has not been explicitly determined. While protein catabolism releases bound water, we hypothesized that water-restricted birds would also oxidize the resulting amino acids, producing additional water as a product of oxidative phosphorylation. To test this, we fed captive house sparrows (Passer domesticus) 13C-labeled leucine for 9 weeks to label endogenous proteins. We conducted weekly trials during which we measured the physiological response to water restriction as changes in lean mass, fat mass, metabolism and the enrichment of 13C in exhaled CO2 (δ13Cbreath). If water-restricted birds catabolized proteins and oxidized the resulting amino acids, we expected to simultaneously observe greater lean mass loss and elevated δ13Cbreath relative to control birds. We found that water-restricted birds catabolized more lean tissue and also had enriched δ13Cbreath in response to water restriction, supporting our hypothesis. δ13Cbreath, however, varied with metabolic rate and the length of the water restriction period, suggesting that birds may spare protein when water balance can be achieved using other physiological strategies.
Collapse
Affiliation(s)
- Elizabeth J. Rogers
- Organismic and Evolutionary Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexander R. Gerson
- Organismic and Evolutionary Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Gastón MS, Akmentins MS. Differential effect of dehydration on the voluntary activity of a diurnal toad. ZOOLOGY 2023; 159:126105. [PMID: 37536073 DOI: 10.1016/j.zool.2023.126105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Anuran amphibians' ability to maintain their activity at high temperatures or low humidity depends on their capacity to face dehydration, especially when they display diurnal and terrestrial life habits. Melanophryniscus rubriventris is a diurnal and terrestrial toad from humid Yungas Andean forests that breeds in temporary ponds. It is exposed to the recurrent risk of dehydration because of pond desiccations during the breeding season. Here, we study how M. rubriventris males behaviorally respond to dehydration by measuring their voluntary activity under an ex-situ experiment. Toads with different hydration levels were exposed to a circular track for voluntary activity measurements. Dehydrated males of M. rubriventris toads did not adopt a water-conserving posture staying active during the test and increasing walking under severe dehydration. Certain tolerance to dehydration would allow performing daily activities under challenging diurnal conditions. The increased walking under severe dehydration suggests water or shelter-seeking behavior that would be crucial for diurnal and terrestrial toads to overcome the unpredictable hydric environment during the breeding season.
Collapse
Affiliation(s)
- María Soledad Gastón
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Canónigo Gorriti 237, 4600 San Salvador de Jujuy, Argentina.
| | - Mauricio Sebastián Akmentins
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Canónigo Gorriti 237, 4600 San Salvador de Jujuy, Argentina
| |
Collapse
|
4
|
Bellot P, Brischoux F, Budzinski H, Dupont SM, Fritsch C, Hope SF, Michaud B, Pallud M, Parenteau C, Prouteau L, Rocchi S, Angelier F. Chronic exposure to tebuconazole alters thyroid hormones and plumage quality in house sparrows (Passer domesticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28259-5. [PMID: 37365357 DOI: 10.1007/s11356-023-28259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Triazoles belong to a family of fungicides that are ubiquitous in agroecosystems due to their widespread use in crops. Despite their efficiency in controlling fungal diseases, triazoles are also suspected to affect non-target vertebrate species through the disruption of key physiological mechanisms. Most studies so far have focused on aquatic animal models, and the potential impact of triazoles on terrestrial vertebrates has been overlooked despite their relevance as sentinel species of contaminated agroecosystems. Here, we examined the impact of tebuconazole on the thyroid endocrine axis, associated phenotypic traits (plumage quality and body condition) and sperm quality in wild-caught house sparrows (Passer domesticus). We experimentally exposed house sparrows to realistic concentrations of tebuconazole under controlled conditions and tested the impact of this exposure on the levels of thyroid hormones (T3 and T4), feather quality (size and density), body condition and sperm morphology. We found that exposure to tebuconazole caused a significant decrease in T4 levels, suggesting that this azole affects the thyroid endocrine axis, although T3 levels did not differ between control and exposed sparrows. Importantly, we also found that exposed females had an altered plumage structure (larger but less dense feathers) relative to control females. The impact of tebuconazole on body condition was dependent on the duration of exposure and the sex of individuals. Finally, we did not show any effect of exposure to tebuconazole on sperm morphology. Our study demonstrates for the first time that exposure to tebuconazole can alter the thyroid axis of wild birds, impact their plumage quality and potentially affect their body condition. Further endocrine and transcriptomic studies are now needed not only to understand the underlying mechanistic effects of tebuconazole on these variables, but also to further investigate their ultimate consequences on performance (i.e. reproduction and survival).
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France.
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Hélène Budzinski
- CNRS-EPOC, UMR 5805, LPTC Research Group, University of Bordeaux, 33400, Talence, France
| | - Sophie M Dupont
- BOREA, MNHN, CNRS 8067, SU, IRD 207, UCN, UA, 97233, Schoelcher, Martinique, France
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, F-25000, Besançon, France
| | - Sydney F Hope
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Bruno Michaud
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Marie Pallud
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Louise Prouteau
- CNRS-EPOC, UMR 5805, LPTC Research Group, University of Bordeaux, 33400, Talence, France
| | - Steffi Rocchi
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, F-25000, Besançon, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| |
Collapse
|
5
|
Padrones MN, Cid FD, Chediack JG. Effects of corticosterone administration on the body condition and blood parameters of the house sparrow, Passer domesticus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:369-382. [PMID: 36772870 DOI: 10.1002/jez.2683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023]
Abstract
Glucocorticoids are steroid hormones produced by the adrenal glands and released into the bloodstream in response to stressful situations. In birds, corticosterone (CORT) is the main glucocorticoid released under stress. Throughout their lives, animals in nature are continually exposed to noxious stimuli known as stressful events. Any alteration of homeostatic stability is a stressful situation and this alteration triggers physiological changes to restore homeostasis. Glucocorticoids are one of the components of the complex set of physiological and behavioral responses to stress. In this work, we use CORT supplied in drinking water to evaluate its effect in blood parameters and physiology in house sparrows (Passer domesticus). To accomplish this, P. domesticus were administered three different doses of CORT in drinking water for 72 h. Body mass, organ mass, pectoral muscle mass, leg muscle mass, and blood parameters (CORT, triglycerides, glucose and uric acid, heterophils/lymphocytes ratio, hematocrit, and serum protein profile) were determined before and after CORT treatment. A 15% decrease in body mass with a significant decrease in pectoral mass were observed after the higher CORT treatment, as well as a decrease in the plasma concentration of uric acid. Lastly, we found a reversal of the heterophils/lymphocytes ratio and a decrease in hematocrit. It was possible to establish first data for baseline and CORT-alteration values in serum protein profile for P. domesticus. Baseline and altered values of blood parameters and serum protein profile could be an important tool in field ecology because they provide important data to assess the physiological condition in wild birds.
Collapse
Affiliation(s)
- Marcelo N Padrones
- Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, San Luis, Argentina
- Área de Biología, Departamento de Biología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Fabricio D Cid
- Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, San Luis, Argentina
- Área de Biología, Departamento de Biología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Juan G Chediack
- Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, San Luis, Argentina
- Área de Biología, Departamento de Biología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
6
|
Deviche P, Sweazea K, Angelier F. Past and future: Urbanization and the avian endocrine system. Gen Comp Endocrinol 2023; 332:114159. [PMID: 36368439 DOI: 10.1016/j.ygcen.2022.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Urban environments are evolutionarily novel and differ from natural environments in many respects including food and/or water availability, predation, noise, light, air quality, pathogens, biodiversity, and temperature. The success of organisms in urban environments requires physiological plasticity and adjustments that have been described extensively, including in birds residing in geographically and climatically diverse regions. These studies have revealed a few relatively consistent differences between urban and non-urban conspecifics. For example, seasonally breeding urban birds often develop their reproductive system earlier than non-urban birds, perhaps in response to more abundant trophic resources. In most instances, however, analyses of existing data indicate no general pattern distinguishing urban and non-urban birds. It is, for instance, often hypothesized that urban environments are stressful, yet the activity of the hypothalamus-pituitary-adrenal axis does not differ consistently between urban and non-urban birds. A similar conclusion is reached by comparing blood indices of metabolism. The origin of these disparities remains poorly understood, partly because many studies are correlative rather than aiming at establishing causality, which effectively limits our ability to formulate specific hypotheses regarding the impacts of urbanization on wildlife. We suggest that future research will benefit from prioritizing mechanistic approaches to identify environmental factors that shape the phenotypic responses of organisms to urbanization and the neuroendocrine and metabolic bases of these responses. Further, it will be critical to elucidate whether factors affect these responses (a) cumulatively or synergistically; and (b) differentially as a function of age, sex, reproductive status, season, and mobility within the urban environment. Research to date has used various taxa that differ greatly not only phylogenetically, but also with regard to ecological requirements, social systems, propensity to consume anthropogenic food, and behavioral responses to human presence. Researchers may instead benefit from standardizing approaches to examine a small number of representative models with wide geographic distribution and that occupy diverse urban ecosystems.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Karen Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR7372, CNRS - La Rochelle Universite, Villiers en Bois, France
| |
Collapse
|
7
|
Dezetter M, Le Galliard JF, Leroux-Coyau M, Brischoux F, Angelier F, Lourdais O. Two stressors are worse than one: combined heatwave and drought affect hydration state and glucocorticoid levels in a temperate ectotherm. J Exp Biol 2022; 225:274818. [PMID: 35319758 DOI: 10.1242/jeb.243777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/14/2022] [Indexed: 11/20/2022]
Abstract
Heatwaves and droughts are becoming more intense and frequent with climate change. These extreme weather events often occur simultaneously and may alter organismal physiology, yet their combined impacts remain largely unknown. Here, we experimentally investigated physiological responses of a temperate ectotherm, the asp viper (Vipera aspis), to a simulated heatwave and drought. We applied a two-by-two factorial design by manipulating the daily temperature cycle (control vs. heatwave) and the water availability (water available vs. water-deprived) over a month followed by exposure to standard thermal conditions with ad libium access to water. Simulated heatwave and water deprivation additively increased mass loss, while water deprivation led to greater plasma osmolality (dehydration). Mass gain from drinking after the treatment period was higher in vipers from the heatwave and water-deprived group suggesting that thirst was synergistically influenced by thermal and water constraints. Heatwave conditions and water deprivation also additively increased baseline corticosterone levels but did not influence basal metabolic rates and plasma markers of oxidative stress. Our results demonstrate that a short-term exposure to combined heatwave and drought can exacerbate physiological stress through additive effects, and interactively impact behavioral responses to dehydration. Considering combined effects of temperature and water availability is thus crucial to assess organismal responses to climate change.
Collapse
Affiliation(s)
- Mathias Dezetter
- Sorbonne University, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (iEES Paris), 4 Place Jussieu, 75252 Paris Cedex 5, France.,Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France
| | - Jean-François Le Galliard
- Sorbonne University, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (iEES Paris), 4 Place Jussieu, 75252 Paris Cedex 5, France.,Ecole normale supérieure, PSL University, Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), 11 chemin de Busseau, 77140 Saint-Pierre-lès-Nemours, France
| | - Mathieu Leroux-Coyau
- Sorbonne University, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (iEES Paris), 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - François Brischoux
- Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France
| | - Fréderic Angelier
- Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France
| | - Olivier Lourdais
- Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France.,School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
8
|
Navarrete L, Bozinovic F, Peña-Villalobos I, Contreras-Ramos C, Sanchez-Hernandez JC, Newsome SD, Nespolo RF, Sabat P. Integrative Physiological Responses to Acute Dehydration in the Rufous-Collared Sparrow: Metabolic, Enzymatic, and Oxidative Traits. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.767280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Predictions indicate that birds worldwide will be affected by global warming and extreme climatic events which is especially relevant for passerines because the diurnal habits, small body size, and high mass-adjusted metabolic rates of this group make it particularly susceptible to increases in temperature and aridity. Some bird species respond to conditions that stress osmoregulation by increasing their rates of energy expenditure, nevertheless, the effect of dehydration on metabolic rates in birds has produced contrasting results. It also remains unknown whether hydration state may cause shifts in tissue-specific metabolic rates or modify tissue oxidative status. We used the rufous-collared sparrow (Zonotrichia capensis), to experimentally test the effect of dehydration on metabolic enzymes in erythrocytes, tissue oxidative status, basal metabolic rate (BMR), and total evaporative water loss. We found a significant increase in mass-adjusted BMR in water restricted (WR) birds compared to control birds (CT). Activity of cytochrome-c-oxidase (COX) in red blood cells (RBCs) was also significantly higher in the WR group relative to the CT group and this activity was positively correlated with mass-adjusted BMR. We found a moderate effect of water restriction on membrane damage of skeletal muscle. In a second set of individuals subjected to the same experimental conditions, lean mass and total water were tightly correlated and decreased by 10 and 12%, respectively, in birds in the WR group relative to the CT group. Decreases in total water and lean mass leads to an increase in mass-adjusted BMR in WR Z. capensis, suggesting that birds may simultaneously increase protein catabolism and production of metabolic water through oxidation. The significant positive relationship between BMR and COX in RBCs is a finding that requires additional research to determine whether erythrocyte metabolism is affected by dehydration per se and or it more generally reflects rates of energy expenditure in birds.
Collapse
|