1
|
Soraire T, Thompson K, Wenzler T, Taibi J, Coffin AB. Effect of pH on Development of the Zebrafish Inner Ear and Lateral Line: Comparisons between High School and University Settings. Zebrafish 2024. [PMID: 39075066 DOI: 10.1089/zeb.2024.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Increasing carbon dioxide levels associated with climate change will likely have a devastating effect on aquatic ecosystems. Aquatic environments sequester carbon dioxide, resulting in acidic conditions that can negatively affect fish development. Increasing climate change impacts in the coming decades will have an outsized effect on younger generations. Therefore, our research had two interconnected goals: 1) understand how aquatic acidification affects the development of zebrafish, and 2) support a high school scientist's ability to address environmental questions of increasing importance to her generation. Working with teachers and other mentors, the first author designed and conducted the research, first in her high school, then in a university research laboratory. Zebrafish embryos were reared in varying pH conditions (6.7-8.2) for up to 7 days. We assessed fish length and development of the inner ear, including the otoliths; structures that depend on calcium carbonate for proper development. Although pH did not affect fish length, fish reared in pH 7.75 had smaller anterior otoliths, showing that pH can impact zebrafish ear development. Furthermore, we demonstrate how zebrafish may be used for high school students to pursue open-ended questions using different levels of available resources.
Collapse
Affiliation(s)
- Theresa Soraire
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Kaitlyn Thompson
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Tracy Wenzler
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Jason Taibi
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington, USA
| |
Collapse
|
2
|
Scovil AM, Boloori T, de Jourdan BP, Speers-Roesch B. The effect of chemical dispersion and temperature on the metabolic and cardiac responses to physically dispersed crude oil exposure in larval American lobster (Homarus americanus). MARINE POLLUTION BULLETIN 2023; 191:114976. [PMID: 37137253 DOI: 10.1016/j.marpolbul.2023.114976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Despite their potential vulnerability to oil spills, little is known about the physiological effects of petroleum exposure and spill responses in cold-water marine animal larvae. We investigated the effects of physically dispersed (water-accommodated fraction, WAF) and chemically dispersed (chemically enhanced WAF, CEWAF; using Slickgone EW) conventional heavy crude oil on the routine metabolic rate and heart rate of stage I larval American lobster (Homarus americanus). We found no effects of 24-h exposure to sublethal concentrations of crude oil WAF or CEWAF at 12 °C. We then investigated the effect of sublethal concentrations of WAFs at three environmentally relevant temperatures (9, 12, 15 °C). The highest WAF concentration increased metabolic rate at 9 °C, whereas it decreased heart rate and increased mortality at 15 °C. Overall, metabolic and cardiac function of American lobster larvae is relatively resilient to conventional heavy crude oil and Slickgone EW exposure, but responses to WAF may be temperature-dependent.
Collapse
Affiliation(s)
- Allie M Scovil
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Tahereh Boloori
- Huntsman Marine Science Centre, 1 Lower Campus Road, St. Andrews, New Brunswick E5B 2L7, Canada
| | - Benjamin P de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Road, St. Andrews, New Brunswick E5B 2L7, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| |
Collapse
|
3
|
Schwaner C, Barbosa M, Schwemmer TG, Pales Espinosa E, Allam B. Increased Food Resources Help Eastern Oyster Mitigate the Negative Impacts of Coastal Acidification. Animals (Basel) 2023; 13:ani13071161. [PMID: 37048417 PMCID: PMC10093323 DOI: 10.3390/ani13071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Oceanic absorption of atmospheric CO2 results in alterations of carbonate chemistry, a process coined ocean acidification (OA). The economically and ecologically important eastern oyster (Crassostrea virginica) is vulnerable to these changes because low pH hampers CaCO3 precipitation needed for shell formation. Organisms have a range of physiological mechanisms to cope with altered carbonate chemistry; however, these processes can be energetically expensive and necessitate energy reallocation. Here, the hypothesis that resilience to low pH is related to energy resources was tested. In laboratory experiments, oysters were reared or maintained at ambient (400 ppm) and elevated (1300 ppm) pCO2 levels during larval and adult stages, respectively, before the effect of acidification on metabolism was evaluated. Results showed that oysters exposed to elevated pCO2 had significantly greater respiration. Subsequent experiments evaluated if food abundance influences oyster response to elevated pCO2. Under high food and elevated pCO2 conditions, oysters had less mortality and grew larger, suggesting that food can offset adverse impacts of elevated pCO2, while low food exacerbates the negative effects. Results also demonstrated that OA induced an increase in oyster ability to select their food particles, likely representing an adaptive strategy to enhance energy gains. While oysters appeared to have mechanisms conferring resilience to elevated pCO2, these came at the cost of depleting energy stores, which can limit the available energy for other physiological processes. Taken together, these results show that resilience to OA is at least partially dependent on energy availability, and oysters can enhance their tolerance to adverse conditions under optimal feeding regimes.
Collapse
|
4
|
Howald S, Moyano M, Crespel A, Kuchenmüller LL, Cominassi L, Claireaux G, Peck MA, Mark FC. Effects of Ocean Acidification over successive generations decrease larval resilience to Ocean Acidification & Warming but juvenile European sea bass could benefit from higher temperatures in the NE Atlantic. J Exp Biol 2022; 225:275035. [PMID: 35417012 DOI: 10.1242/jeb.243802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
Abstract
European sea bass (Dicentrarchus labrax) is a large, economically important fish species with a long generation time whose long-term resilience to ocean acidification (OA) and warming (OW) is not clear. We incubated sea bass from Brittany (France) for two generations (>5 years in total) under ambient and predicted OA conditions (PCO2: 650 and 1700 µatm) crossed with ambient and predicted ocean OW conditions in F1 (temperature: 15-18°C and 20-23°C) to investigate the effects of climate change on larval and juvenile growth and metabolic rate. We found that in F1, OA as single stressor at ambient temperature did not affect larval or juvenile growth and OW increased developmental time and growth rates, but OAW decreased larval size at metamorphosis. Larval routine and juvenile standard metabolic rates were significantly lower in cold compared to warm conditioned fish and also lower in F0 compared to F1 fish. We did not find any effect of OA as a single stressor on metabolic rates. Juvenile PO2crit was not affected by OA or OAW in both generations. We discuss the potential underlying mechanisms resulting in the resilience of F0 and F1 larvae and juveniles to OA and in the beneficial effects of OW on F1 larval growth and metabolic rate, but on the other hand in the vulnerability of F1, but not F0 larvae to OAW. With regard to the ecological perspective, we conclude that recruitment of larvae and early juveniles to nursery areas might decrease under OAW conditions but individuals reaching juvenile phase might benefit from increased performance at higher temperatures.
Collapse
Affiliation(s)
- Sarah Howald
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany.,Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany
| | - Marta Moyano
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany.,Center for Coastal Research, University of Agder, Postbox 422, 4604 Kristiansand, Norway
| | - Amélie Crespel
- Ifremer, LEMAR (UMR 6539), Laboratory of Adaptation, and Nutrition of Fish, Centre Ifremer de Bretagne, Plouzané, France
| | - Luis L Kuchenmüller
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Louise Cominassi
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany.,Institute of Arctic Biology, University of Alaska, Fairbanks, PO Box 757000, Fairbanks, AK 99775, USA
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Brest, France.,Ifremer, LEMAR (UMR 6539), Laboratory of Adaptation, and Nutrition of Fish, Centre Ifremer de Bretagne, Plouzané, France
| | - Myron A Peck
- Institute of Marine Ecosystem and Fisheries Science, Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany.,Coastal Systems (COS), Royal Netherlands Institute for Sea Research (NIOZ), Netherlands
| | - Felix C Mark
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| |
Collapse
|