1
|
Du J, Zheng P, Gao W, Liang Q, Leng L, Shi L. All roads lead to Rome: the plasticity of gut microbiome drives the extensive adaptation of the Yarkand toad-headed agama ( Phrynocephalus axillaris) to different altitudes. Front Microbiol 2025; 15:1501684. [PMID: 39845039 PMCID: PMC11751238 DOI: 10.3389/fmicb.2024.1501684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
The gut microbiome was involved in a variety of physiological processes and played a key role in host environmental adaptation. However, the mechanisms of their response to altitudinal environmental changes remain unclear. In this study, we used 16S rRNA sequencing and LC-MS metabolomics to investigate the changes in the gut microbiome and metabolism of the Yarkand toad-headed agama (Phrynocephalus axillaris) at different altitudes (-80 m to 2000 m). The results demonstrated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phylum, Lachnospiraceae and Oscillospiraceae were the most abundant family, and the low-altitude populations had higher richness than high-altitude populations; Akkermansiaceae appeared to be enriched in high-altitude populations and the relative abundance tended to increase with altitude. The gut microbiome of three populations of P. axillaris at different altitudes was clustered into two different enterotypes, low-altitude populations and high-altitude populations shared an enterotype dominated by Akkermansia, Kineothrix, Phocaeicola; intermediate-altitude populations had an enterotype dominated by Mesorhizobium, Bradyrhizobium. Metabolites involved in amino acid and lipid metabolism differed significantly at different altitudes. The above results suggest that gut microbiome plasticity drives the extensive adaptation of P. axillaris to multi-stress caused by different altitudes. With global warming, recognizing the adaptive capacity of wide-ranging species to altitude can help plan future conservation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
2
|
Nufio CR, Sheffer MM, Smith JM, Troutman MT, Bawa SJ, Taylor ED, Schoville SD, Williams CM, Buckley LB. Insect size responses to climate change vary across elevations according to seasonal timing. PLoS Biol 2025; 23:e3002805. [PMID: 39886774 PMCID: PMC11783300 DOI: 10.1371/journal.pbio.3002805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025] Open
Abstract
Body size declines are a common response to warming via both plasticity and evolution, but variable size responses have been observed for terrestrial ectotherms. We investigate how temperature-dependent development and growth rates in ectothermic organisms induce variation in size responses. Leveraging long-term data for six montane grasshopper species spanning 1,768-3 901 m, we detect size shifts since ~1960 that depend on elevation and species' seasonal timing. Size shifts have been concentrated at low elevations, with the early emerging species (those that overwinter as juveniles) increasing in size, while later season species are becoming smaller. Interannual temperature variation accounts for the size shifts. The earliest season species may be able to take advantage of warmer conditions accelerating growth during early spring development, whereas warm temperatures may adversely impact later season species via mechanisms such as increased rates of energy use or thermal stress. Grasshoppers tend to capitalize on warm conditions by both getting bigger and reaching adulthood earlier. Our analysis further reinforces the need to move beyond expectations of universal responses to climate change to consider how environmental exposure and sensitivity vary across elevations and life histories.
Collapse
Affiliation(s)
- César R. Nufio
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United Sates of America
- University of Colorado Natural History Museum, University of Colorado, Boulder, Colorado, United States of America
| | - Monica M. Sheffer
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Julia M. Smith
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Michael T. Troutman
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Simran J. Bawa
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Ebony D. Taylor
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Caroline M. Williams
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Lauren B. Buckley
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Kelly E, Petersen LH, Huggett D, Hala D. Reaction thermodynamics as a constraint on piscine steroidogenesis flux distributions. Comp Biochem Physiol A Mol Integr Physiol 2024; 287:111533. [PMID: 37844836 DOI: 10.1016/j.cbpa.2023.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
While a considerable amount is known of the dynamics of piscine steroidogenesis during reproduction, the influence of thermodynamics constraints on its control has not been studied. In this manuscript, Gibbs free energy change of reactions was calculated for piscine steroidogenesis using the in silico eQuilibrator thermodynamics calculator. The analysis identified cytochrome P450 (cyp450) oxidoreductase reactions to have more negative Gibbs free energy changes relative to hydroxysteroid (HSD) and transferase reactions. In addition, a more favorable Gibbs free energy change was predicted for the Δ5 (cyp450 catalyzed) vs. Δ4 (HSD catalyzed) steroidogenesis branch-point, which converts pregnenolone to 17α-hydroxypregnenolone or progesterone respectively. Comparison of in silico predictions with in vivo experimentally measured flux across the Δ5 vs. Δ4 branch-point showed higher flux through the thermodynamically more favorable Δ5 pathway in reproducing or spawning vs. non-spawning fathead minnows (Pimephales promelas). However, the exposure of fish to endocrine stressors such as hypoxia or the synthetic estrogen 17α-ethinylestradiol (EE2), resulted in increased flux through both Δ5 and Δ4 pathways, indicating an adaptive response to increase steroidogenic redundancy. The correspondence of elevated flux through the Δ5 branch-point in spawning fish indicated the use of a thermodynamically favorable pathway to optimize steroid hormone productions during reproduction. We hypothesize that such selective use of a thermodynamically favorable steroidogenesis pathway may conserve reduced equivalents or transcriptional costs for investment to other biosynthetic or catabolic reactions to support reproduction. If generalizable, such an approach can provide novel insights into the structural principles and regulation of steroidogenesis or other metabolic pathways.
Collapse
Affiliation(s)
- E Kelly
- Binghamton University, 4400 Vestal Parkway E, Binghamton, NY, USA; Department of Marine Biology, Texas A&M University at Galveston, TX, USA
| | - L H Petersen
- Department of Marine Biology, Texas A&M University at Galveston, TX, USA
| | - D Huggett
- University of North Texas, Denton, TX, USA
| | - D Hala
- Department of Marine Biology, Texas A&M University at Galveston, TX, USA.
| |
Collapse
|
4
|
Johnson CA, Ren R, Buckley LB. Temperature Sensitivity of Fitness Components across Life Cycles Drives Insect Responses to Climate Change. Am Nat 2023; 202:753-766. [PMID: 38033177 DOI: 10.1086/726896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractThermal performance curves (TPCs) are increasingly used as a convenient approach to predict climate change impacts on ectotherms that accounts for organismal thermal sensitivity; however, directly applying TPCs to temperature data to estimate fitness has yielded contrasting predictions depending on assumptions regarding climate variability. We compare direct application of TPCs to an approach integrating TPCs for different fitness components (e.g., per capita birth rate, adult life span) across ectotherm life cycles into a population dynamic model, which we independently validated with census data and applied to hemipteran insect populations across latitude. The population model predicted that climate change will reduce insect fitness more at higher latitudes due to its effects on survival but will reduce net reproductive rate more at lower latitudes due to its effects on fecundity. Directly applying TPCs underestimated climate change impacts on fitness relative to incorporating the TPCs into the population model due to simplifying survival dynamics across the life cycle. The population model predicted that climate change will reduce mean insect density and increase population variability at higher latitudes via reduced survival, despite faster development and a longer activity period. Our study highlights the importance of considering how multiple fitness components respond to climate variability across the life cycle to better understand and anticipate the ecological consequence of climate change.
Collapse
|
5
|
Zhang L, Li N, Dayananda B, Wang L, Chen H, Cao Y. Genome-Wide Identification and Phylogenetic Analysis of TRP Gene Family Members in Saurian. Animals (Basel) 2022; 12:3593. [PMID: 36552513 PMCID: PMC9774356 DOI: 10.3390/ani12243593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The transient receptor potential plays a critical role in the sensory nervous systems of vertebrates in response to various mechanisms and stimuli, such as environmental temperature. We studied the physiological adaptive evolution of the TRP gene in the saurian family and performed a comprehensive analysis to identify the evolution of the thermo-TRPs channels. All 251 putative TRPs were divided into 6 subfamilies, except TRPN, from the 8 saurian genomes. Multiple characteristics of these genes were analyzed. The results showed that the most conserved proteins of TRP box 1 were located in motif 1, and those of TRP box 2 were located in motif 10. The TRPA and TRPV in saurian tend to be one cluster, as a sister cluster with TRPC, and the TRPM is the root of group I. The TRPM, TRPV, and TRPP were clustered into two clades, and TRPP were organized into TRP PKD1-like and PKD2-like. Segmental duplications mainly occurred in the TRPM subfamily, and tandem duplications only occurred in the TRPV subfamily. There were 15 sites to be under positive selection for TRPA1 and TRPV2 genes. In summary, gene structure, chromosomal location, gene duplication, synteny analysis, and selective pressure at the molecular level provided some new evidence for genetic adaptation to the environment. This result provides a basis for identifying and classifying TRP genes and contributes to further elucidating their potential function in thermal sensors.
Collapse
Affiliation(s)
- Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan 430223, China
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ning Li
- College of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Buddhi Dayananda
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Huimin Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
6
|
Zhang L, Dayananda B, Xia JG, Sun BJ. Editorial: Ecophysiological analysis of vulnerability to climate warming in ectotherms. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.946836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Sun B, Williams CM, Li T, Speakman JR, Jin Z, Lu H, Luo L, Du W. Higher metabolic plasticity in temperate compared to tropical lizards suggests increased resilience to climate change. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
- Department of Integrative Biology University of California Berkeley CA USA
| | | | - Teng Li
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - John R. Speakman
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen UK
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| | - Zengguang Jin
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Hongliang Lu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution Hangzhou Normal University Hangzhou People's Republic of China
| | - Laigao Luo
- Department of Biology & food engineering Chuzhou University Chuzhou People's Republic of China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
8
|
Butterson S, Roe AD, Marshall KE. Plasticity of cold hardiness in the eastern spruce budworm, Choristoneura fumiferana. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:110998. [PMID: 34082110 DOI: 10.1016/j.cbpa.2021.110998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022]
Abstract
High latitude insect populations must cope with extreme conditions, particularly low temperatures. Insects use a variety of cold hardiness mechanisms to withstand this temperature stress, and these can drive geographic distributions through overwintering mortality. The degree of cold hardiness can be altered by two evolved responses: phenotypic plasticity and local adaptation. Phenotypic plasticity can occur within or between generations (transgenerational plasticity; TGP), and local adaptation can evolve through directional selection in response to regional climatic differences. We used the eastern spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) as a model to explore the role that variable winter temperatures play in inducing two aspects of plasticity in cold hardiness: TGP and local adaptation in phenotypic plasticity. This species is one of the most destructive boreal forest pests in North America, therefore accurately predicting overwintering survival is essential for effective management. While we found no evidence of TGP in cold hardiness, there was a long term fitness cost to larvae that experienced repeated cold exposures. We also found evidence of local adaptation in both seasonal and short-term plasticity of cold hardiness, as our more northerly populations that would experience lower overwintering temperatures had more plastic responses to cold exposure. These findings provide evidence for the importance of phenotypic plasticity and local adaptation when modelling species distributions.
Collapse
Affiliation(s)
- Skye Butterson
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amanda D Roe
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON P6A 2E5, Canada.
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
9
|
Franklin CE, Hoppeler HH. Elucidating mechanism is important in forecasting the impact of a changing world on species survival. J Exp Biol 2021; 224:224/Suppl_1/jeb242284. [PMID: 33627471 DOI: 10.1242/jeb.242284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Hans H Hoppeler
- Department of Anatomy, University of Bern, 3000 Bern, Switzerland
| |
Collapse
|