1
|
Pasquevich MY, Dreon MS, Diupotex-Chong ME, Heras H. Phylogenetic variations in a novel family of hyperstable apple snail egg proteins: insights into structural stability and functional trends. J Exp Biol 2024; 227:jeb247277. [PMID: 39022896 DOI: 10.1242/jeb.247277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
The relationship between protein stability and functional evolution is little explored in proteins purified from natural sources. Here, we investigated a novel family of egg proteins (Perivitellin-1, PV1) from Pomacea snails. Their remarkable stability and clade-related functions in most derived clades (Canaliculata and Bridgesii) make them excellent candidates for exploring this issue. To that aim, we studied PV1 (PpaPV1) from the most basal lineage, Flagellata. PpaPV1 displays unparalleled structural and kinetic stability, surpassing PV1s from derived clades, ranking among the most hyperstable proteins documented in nature. Its spectral features contribute to a pale egg coloration, exhibiting a milder glycan binding lectin activity with a narrower specificity than PV1s from the closely related Bridgesii clade. These findings provide evidence for substantial structural and functional changes throughout the genus' PV1 evolution. We observed that structural and kinetic stability decreased in a clade-related fashion and was associated with large variations in defensive traits. For instance, pale PpaPV1 lectin turns potent in the Bridgesii clade, adversely affecting gut morphology, while giving rise to brightly colored PV1s providing eggs with a conspicuous, probably warning signal in the Canaliculata clade. This work provides a comprehensive comparative analysis of PV1s from various apple snail species within a phylogenetic framework, offering insights into the interplay among their structural features, stability profiles and functional roles. More broadly, our work provides one of the first examples from natural evolution showing the crucial link among protein structure, stability and evolution of new functions.
Collapse
Affiliation(s)
- María Y Pasquevich
- Instituto de Investigaciones Bioquímicas de La Plata 'Prof. Dr. Rodolfo R. Brenner' (INIBIOLP), Universidad Nacional de La Plata (UNLP) - CONICET, C. P. 1900 La Plata, Argentina
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, C. P. 1900 La Plata, Argentina
| | - Marcos S Dreon
- Instituto de Investigaciones Bioquímicas de La Plata 'Prof. Dr. Rodolfo R. Brenner' (INIBIOLP), Universidad Nacional de La Plata (UNLP) - CONICET, C. P. 1900 La Plata, Argentina
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, C. P. 1900 La Plata, Argentina
| | - María E Diupotex-Chong
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata 'Prof. Dr. Rodolfo R. Brenner' (INIBIOLP), Universidad Nacional de La Plata (UNLP) - CONICET, C. P. 1900 La Plata, Argentina
- Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, C. P. 1900 La Plata, Argentina
| |
Collapse
|
2
|
Giglio ML, Boland W, Heras H. Egg toxic compounds in the animal kingdom. A comprehensive review. Nat Prod Rep 2022; 39:1938-1969. [PMID: 35916025 DOI: 10.1039/d2np00029f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1951 to 2022Packed with nutrients and unable to escape, eggs are the most vulnerable stage of an animal's life cycle. Consequently, many species have evolved chemical defenses and teamed up their eggs with a vast array of toxic molecules for defense against predators, parasites, or pathogens. However, studies on egg toxins are rather scarce and the available information is scattered. The aim of this review is to provide an overview of animal egg toxins and to analyze the trends and patterns with respect to the chemistry and biosynthesis of these toxins. We analyzed their ecology, distribution, sources, occurrence, structure, function, relative toxicity, and mechanistic aspects and include a brief section on the aposematic coloration of toxic eggs. We propose criteria for a multiparametric classification that accounts for the complexity of analyzing the full set of toxins of animal eggs. Around 100 properly identified egg toxins are found in 188 species, distributed in 5 phyla: cnidarians (2) platyhelminths (2), mollusks (9), arthropods (125), and chordates (50). Their scattered pattern among animals suggests that species have evolved this strategy independently on numerous occasions. Alkaloids are the most abundant and widespread, among the 13 types of egg toxins recognized. Egg toxins are derived directly from the environment or are endogenously synthesized, and most of them are transferred by females inside the eggs. Their toxicity ranges from ρmol kg-1 to mmol kg-1, and for some species, experiments support their role in predation deterrence. There is still a huge gap in information to complete the whole picture of this field and the number of toxic eggs seems largely underestimated.
Collapse
Affiliation(s)
- Matías L Giglio
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina.
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina. .,Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
3
|
Mollusc N-glycosylation: Structures, Functions and Perspectives. Biomolecules 2021; 11:biom11121820. [PMID: 34944464 PMCID: PMC8699351 DOI: 10.3390/biom11121820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Molluscs display a sophisticated N-glycan pattern on their proteins, which is, in terms of involved structural features, even more diverse than that of vertebrates. This review summarises the current knowledge of mollusc N-glycan structures, with a focus on the functional aspects of the corresponding glycoproteins. Furthermore, the potential of mollusc-derived biomolecules for medical applications is addressed, emphasising the importance of mollusc research.
Collapse
|
4
|
Rodriguez C, Prieto GI, Vega IA, Castro-Vazquez A. Morphological grounds for the obligate aerial respiration of an aquatic snail: functional and evolutionary perspectives. PeerJ 2021; 9:e10763. [PMID: 33954023 PMCID: PMC8052964 DOI: 10.7717/peerj.10763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
The freshwater caenogastropod family Ampullariidae is emerging as a model for a variety of studies, among them, the evolution of terrestriality. A common character of the family is that all its members bear a lung while retaining the ancestral gill. This ensures that many ampullariids are able to inhabit poorly oxygenated waters, to bury in the mud during estivation, and to temporarily leave the water, in some species for oviposition. To these characters Pomacea canaliculata (Caenogastropoda, Ampullariidae) adds that is an obligate air-breather. In a recent paper, we showed the gill epithelium of P. canaliculata has a set of characteristics that suggest its role for oxygen uptake may be less significant than its role in ionic/osmotic regulation and immunity. We complement here our morphological investigation on the respiratory organs of P. canaliculata by studying the lung of this species at the anatomical (3D reconstructions of the blood system and nerve supply), histological and ultrastructural levels. The circulation of the gill and the lung are interconnected so that the effluence of blood from the gill goes to the lung where it completes oxygenation. Besides that, we found the lung cavity is lined by a pavement epithelium that encloses an anastomosing network of small blood spaces resting over a fibromuscular layer, which altogether form the respiratory lamina. The pavement cells form a blood-gas barrier that is 80–150 nm thick and thus fulfils the requirements for an efficient gas exchanger. Tufts of ciliary cells, together with some microvillar and secretory cells, are interspersed in the respiratory lamina. Rhogocytes, which have been proposed to partake in metal depuration and in the synthesis of hemocyanin in other gastropods, were found below the respiratory lamina, in close association with the storage cell tissue. In light of these findings, we discuss the functional role of the lung in P. canaliculata and compare it with that of other gastropods. Finally, we point to some similarities in the pattern of the evolution of air dependence in this family.
Collapse
Affiliation(s)
- Cristian Rodriguez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Guido I Prieto
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.,Department of Philosophy I, Ruhr University Bochum, Bochum, Germany
| | - Israel A Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alfredo Castro-Vazquez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|