1
|
Negrete B, Ackerly KL, Esbaugh AJ. Implications of chronic hypoxia during development in red drum. J Exp Biol 2024; 227:jeb247618. [PMID: 39092456 DOI: 10.1242/jeb.247618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Respiratory plasticity is a beneficial response to chronic hypoxia in fish. Red drum, a teleost that commonly experiences hypoxia in the Gulf of Mexico, have shown respiratory plasticity following sublethal hypoxia exposure as juveniles, but implications of hypoxia exposure during development are unknown. We exposed red drum embryos to hypoxia (40% air saturation) or normoxia (100% air saturation) for 3 days post fertilization (dpf). This time frame encompasses hatch and exogenous feeding. At 3 dpf, there was no difference in survival or changes in size. After the 3-day hypoxia exposure, all larvae were moved and reared in common normoxic conditions. Fish were reared for ∼3 months and effects of the developmental hypoxia exposure on swim performance and whole-animal aerobic metabolism were measured. We used a cross design wherein fish from normoxia (N=24) were exercised in swim tunnels in both hypoxia (40%, n=12) and normoxia (100%, n=12) conditions, and likewise for hypoxia-exposed fish (n=10 in each group). Oxygen consumption, critical swim speed (Ucrit), critical oxygen threshold (Pcrit) and mitochondrial respiration were measured. Hypoxia-exposed fish had higher aerobic scope, maximum metabolic rate, and higher liver mitochondrial efficiency relative to control fish in normoxia. Interestingly, hypoxia-exposed fish showed increased hypoxia sensitivity (higher Pcrit) and recruited burst swimming at lower swim speeds relative to control fish. These data provide evidence that early hypoxia exposure leads to a complex response in later life.
Collapse
Affiliation(s)
- Benjamin Negrete
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
- Department of Zoology, The University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| | - Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
2
|
Zambie AD, Ackerly KL, Negrete B, Esbaugh AJ. Warming-induced "plastic floors" improve hypoxia vulnerability, not aerobic scope, in red drum (Sciaenops ocellatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171057. [PMID: 38378061 DOI: 10.1016/j.scitotenv.2024.171057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Ocean warming is a prevailing threat to marine ectotherms. Recently the "plastic floors, concrete ceilings" hypothesis was proposed, which suggests that a warmed fish will acclimate to higher temperatures by reducing standard metabolic rate (SMR) while keeping maximum metabolic rate (MMR) stable, therefore improving aerobic scope (AS). Here we evaluated this hypothesis on red drum (Sciaenops ocellatus) while incorporating measures of hypoxia vulnerability (critical oxygen threshold; Pcrit) and mitochondrial performance. Fish were subjected to a 12-week acclimation to 20 °C or 28 °C. Respirometry was performed every 4 weeks to obtain metabolic rate and Pcrit; mitochondrial respirometry was performed on liver and heart samples at the end of the acclimation. 28 °C fish had a significantly higher SMR, MMR, and Pcrit than 20 °C controls at time 0, but SMR declined by 36.2 % over the 12-week acclimation. No change in SMR was observed in the control treatment. Contrary to expectations, SMR suppression did not improve AS relative to time 0 owing to a progressive decline in MMR over acclimation time. Pcrit decreased by 27.2 % in the warm-acclimated fishes, which resulted in temperature treatments having statistically similar values by 12-weeks. No differences in mitochondrial traits were observed in the heart - despite a Δ8 °C assay temperature - while liver respiratory and coupling control ratios were significantly improved, suggesting that mitochondrial plasticity may contribute to the reduced SMR with warming. Overall, this work suggests that warming induced metabolic suppression offsets the deleterious consequences of high oxygen demand on hypoxia vulnerability, and in so doing greatly expands the theoretical range of metabolically available habitats for red drum.
Collapse
Affiliation(s)
- Adam D Zambie
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX 78373, United States; Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, United States
| | - Kerri Lynn Ackerly
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX 78373, United States
| | - Benjamin Negrete
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX 78373, United States; Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrew J Esbaugh
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX 78373, United States.
| |
Collapse
|
3
|
Duncan MI, Micheli F, Boag TH, Marquez JA, Deres H, Deutsch CA, Sperling EA. Oxygen availability and body mass modulate ectotherm responses to ocean warming. Nat Commun 2023; 14:3811. [PMID: 37369654 PMCID: PMC10300008 DOI: 10.1038/s41467-023-39438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In an ocean that is rapidly warming and losing oxygen, accurate forecasting of species' responses must consider how this environmental change affects fundamental aspects of their physiology. Here, we develop an absolute metabolic index (ΦA) that quantifies how ocean temperature, dissolved oxygen and organismal mass interact to constrain the total oxygen budget an organism can use to fuel sustainable levels of aerobic metabolism. We calibrate species-specific parameters of ΦA with physiological measurements for red abalone (Haliotis rufescens) and purple urchin (Strongylocentrotus purpuratus). ΦA models highlight that the temperature where oxygen supply is greatest shifts cooler when water loses oxygen or organisms grow larger, providing a mechanistic explanation for observed thermal preference patterns. Viable habitat forecasts are disproportionally deleterious for red abalone, revealing how species-specific physiologies modulate the intensity of a common climate signal, captured in the newly developed ΦA framework.
Collapse
Affiliation(s)
- Murray I Duncan
- Earth and Planetary Science, Stanford University, Stanford, CA, USA.
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
- Department of Environment, University of Seychelles, Anse Royale, Seychelles.
- Blue Economy Research Institute, University of Seychelles, Anse Royale, Seychelles.
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa.
| | - Fiorenza Micheli
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA
| | - Thomas H Boag
- Earth and Planetary Science, Stanford University, Stanford, CA, USA
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, 06511, USA
| | - J Andres Marquez
- Earth and Planetary Science, Stanford University, Stanford, CA, USA
| | - Hailey Deres
- Earth Systems, Stanford University, Stanford, CA, USA
| | - Curtis A Deutsch
- Department of Geosciences and the High Meadows Environmental Institute, Princeton, NJ, USA
| | - Erik A Sperling
- Earth and Planetary Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Somo DA, Chu K, Richards JG. Aerobic scope falls to nil at Pcrit and anaerobic ATP production increases below Pcrit in the tidepool sculpin, Oligocottus maculosus. Biol Lett 2022; 18:20220342. [PMID: 36475421 PMCID: PMC9727657 DOI: 10.1098/rsbl.2022.0342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The critical oxygen tension of whole-animal oxygen uptake rate, or Pcrit, has historically been defined as the oxygen partial pressure (PO2) at which aerobic scope falls to zero and further declines in PO2 require substrate-level phosphorylation to meet shortfalls in aerobic ATP production, thereby time-limiting survival. Despite the inclusion of aerobic scope and anaerobic ATP production in the definition, little effort has been made to verify that Pcrit measurements, the vast majority of which are obtained using respirometry in resting animals, actually reflect the predictions of zero aerobic scope and a transition to increasing reliance on anaerobic ATP production. To test these predictions, we compared aerobic scope and levels of whole-body lactate at oxygen partial pressures (PO2s) bracketing Pcrit obtained in resting fish during progressive hypoxia in the tidepool sculpin, Oligocottus maculosus. We found that aerobic scope falls to zero at Pcrit and, in resting fish exposed to PO2s < Pcrit, whole-body lactate accumulated pointing to an increased reliance on anaerobic ATP production. These results support the interpretation of Pcrit as a key oxygen threshold at which aerobic scope falls to nil and, below Pcrit, survival is time-limited based on anaerobic metabolic capacity.
Collapse
Affiliation(s)
- Derek A. Somo
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Ken Chu
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jeffrey G. Richards
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
5
|
Negrete B, Ackerly KL, Dichiera AM, Esbaugh AJ. Respiratory plasticity improves aerobic performance in hypoxia in a marine teleost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157880. [PMID: 35944637 DOI: 10.1016/j.scitotenv.2022.157880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Ocean deoxygenation is a pressing concern in the face of climate change. In response to prolonged hypoxia, fishes have demonstrated the ability to dynamically regulate hemoglobin (Hb) expression to enhance oxygen (O2) uptake. Here, we examined hypoxia-inducible Hb expression in red drum (Sciaenops ocellatus) and the subsequent implications on Hb-O2 binding affinity and aerobic scope. Fish were acclimated to 30 % air saturation for 1 d, 4 d, 8 d, 2 w, or 6 w, and red blood cells were collected for gene expression and biochemical profiling. Hypoxia acclimation induced significant up-regulation of one Hb subunit isoform (hbα 2) relative to control by 4 d with consistent upregulation thereafter. Hematocrit increased in hypoxia, with no changes in the allosteric modulator [NTP] at any time point. Changes in Hb expression co-occurred with a reduced Root effect (~26 % in normoxia, ~14 % in hypoxia) at a physiologically relevant pH while increasing O2 binding affinity (i.e., lower P50). These changes correlated with increased maximum metabolic rate and aerobic scope relative to controls when fish were tested in hypoxia. These results demonstrate an important role for Hb multiplicity in improving O2 affinity and maximizing respiratory performance in hypoxia.
Collapse
Affiliation(s)
- Benjamin Negrete
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA.
| | - Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Angelina M Dichiera
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA; Department of Zoology, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
6
|
Dichiera AM, Negrete, Jr B, Ackerly KL, Esbaugh AJ. The role of carbonic anhydrase-mediated tissue oxygen extraction in a marine teleost acclimated to hypoxia. J Exp Biol 2022; 225:281316. [DOI: 10.1242/jeb.244474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT
With the growing prevalence of hypoxia (O2 levels ≤2 mg l−1) in aquatic and marine ecosystems, there is increasing interest in the adaptive mechanisms fish may employ to better their performance in stressful environments. Here, we investigated the contribution of a proposed strategy for enhancing tissue O2 extraction – plasma-accessible carbonic anhydrase (CA-IV) – under hypoxia in a species of estuarine fish (red drum, Sciaenops ocellatus) that thrives in fluctuating habitats. We predicted that hypoxia-acclimated fish would increase the prevalence of CA-IV in aerobically demanding tissues to confer more efficient tissue O2 extraction. Furthermore, we predicted the phenotypic changes to tissue O2 extraction that occur with hypoxia acclimation may improve respiratory and swim performance under 100% O2 conditions (i.e. normoxia) when compared with performance in fish that have not been acclimated to hypoxia. Interestingly, there were no significant differences in relative CA-IV mRNA expression, protein abundance or enzyme activity between the two treatments, suggesting CA-IV function is maintained under hypoxia. Likewise, respiratory performance of hypoxia-acclimated fish was similar to that of control fish when tested in normoxia. Critical swim speed (Ucrit) was significantly higher in hypoxia-acclimated fish but translated to marginal ecological benefits with an increase of ∼0.3 body lengths per second. Instead, hypoxia-acclimated fish may have relied more heavily on anaerobic metabolism during their swim trials, utilizing burst swimming 1.5 times longer than control fish. While the maintenance of CA-IV may still be an important contributor for hypoxia tolerance, our evidence suggests hypoxia-acclimated red drum are using other mechanisms to cope in an O2-depleted environment.
Collapse
Affiliation(s)
- Angelina M. Dichiera
- The University of British Columbia 1 Department of Zoology , , Vancouver, BC , Canada V6T 1Z4
| | - Benjamin Negrete, Jr
- Marine Science Institute, The University of Texas at Austin 2 , Port Aransas, TX 78373 , USA
| | - Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin 2 , Port Aransas, TX 78373 , USA
| | - Andrew J. Esbaugh
- Marine Science Institute, The University of Texas at Austin 2 , Port Aransas, TX 78373 , USA
| |
Collapse
|
7
|
Harter TS, Damsgaard C, Regan MD. Linking environmental salinity to respiratory phenotypes and metabolic rate in fishes: a data mining and modelling approach. J Exp Biol 2022; 225:274262. [PMID: 35258603 DOI: 10.1242/jeb.243421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The gill is the primary site of ionoregulation and gas exchange in adult teleost fishes. However, those characteristics that benefit diffusive gas exchange (large, thin gills) may also enhance the passive equilibration of ions and water that threaten osmotic homeostasis. Our literature review revealed that gill surface area and thickness were similar in freshwater (FW) and seawater (SW) species; however, the diffusive oxygen (O2) conductance (Gd) of the gill was lower in FW species. While a lower Gd may reduce ion losses, it also limits O2 uptake capacity and possibly aerobic performance in situations of high O2 demand (e.g. exercise) or low O2 availability (e.g. environmental hypoxia). We also found that FW fishes had significantly higher haemoglobin (Hb)-O2 binding affinities than SW species, which will increase the O2 diffusion gradient across the gills. Therefore, we hypothesized that the higher Hb-O2 affinity of FW fishes compensates, in part, for their lower Gd. Using a combined literature review and modelling approach, our results show that a higher Hb-O2 affinity in FW fishes increases the flux of O2 across their low-Gd gills. In addition, FW and SW teleosts can achieve similar maximal rates of O2 consumption (ṀO2,max) and hypoxia tolerance (Pcrit) through different combinations of Hb-O2 affinity and Gd. Our combined data identified novel patterns in gill and Hb characteristics between FW and SW fishes and our modelling approach provides mechanistic insight into the relationship between aerobic performance and species distribution ranges, generating novel hypotheses at the intersection of cardiorespiratory and ionoregulatory fish physiology.
Collapse
Affiliation(s)
- Till S Harter
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Christian Damsgaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark
| | - Matthew D Regan
- Département de sciences biologiques, Université de Montréal, Montreal, QC, Canada, H3T 1J4
| |
Collapse
|
8
|
Seibel B, Andres A, Birk M, Shaw T, Timpe A, Welsh C. Response to 'Coming up for air'. J Exp Biol 2021; 224:272172. [PMID: 34522952 DOI: 10.1242/jeb.243148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022]
Affiliation(s)
- Brad Seibel
- University of South Florida, College of Marine Science, 830 1st St SE, St Petersburg, FL 33701, USA
| | - Alyssa Andres
- University of South Florida, College of Marine Science, 830 1st St SE, St Petersburg, FL 33701, USA
| | - Matthew Birk
- University of South Florida, College of Marine Science, 830 1st St SE, St Petersburg, FL 33701, USA
| | - Tracy Shaw
- University of South Florida, College of Marine Science, 830 1st St SE, St Petersburg, FL 33701, USA
| | - Alexander Timpe
- University of South Florida, College of Marine Science, 830 1st St SE, St Petersburg, FL 33701, USA
| | - Christina Welsh
- University of South Florida, College of Marine Science, 830 1st St SE, St Petersburg, FL 33701, USA
| |
Collapse
|
9
|
Dichiera AM, Khursigara AJ, Esbaugh AJ. The effects of warming on red blood cell carbonic anhydrase activity and respiratory performance in a marine fish. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111033. [PMID: 34252533 DOI: 10.1016/j.cbpa.2021.111033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Measures of fitness are valuable tools to predict species' responses to environmental changes, like increased water temperature. Aerobic scope (AS) is a measure of an individual's capacity for aerobic processes, and frequently used as a proxy for fitness. However, AS is complicated by individual variation found not only within a species, but within similar body sizes as well. Maximum metabolic rate (MMR), one of the factors determining AS, is constrained by an individual's ability to deliver and extract oxygen (O2) at the tissues. Recently, data has shown that red blood cell carbonic anhydrase (RBC CA) is rate-limiting for O2 delivery in red drum (Sciaenops ocellatus). We hypothesized increased temperature impacts MMR and RBC CA activity in a similar manner, and that an individual's RBC CA activity drives individual variation in AS. Red drum were acutely exposed to increased temperature (+6 °C; 22 °C to 28 °C) for 24 h prior to exhaustive exercise and intermittent-flow respirometry at 28 °C. RBC CA activity was measured before temperature exposure and after aerobic performance. Due to enzymatic thermal sensitivity, acute warming increased individual RBC CA activity by 36%, while there was no significant change in the control (22 °C) treatment. Interestingly, average MMR of the acute warming treatment was 36% greater than that of control drum. However, we found no relationships between individual RBC CA activity and their respective MMR and AS at either temperature. While warming similarly affects RBC CA activity and MMR, RBC CA activity is not a predictor of individual MMR.
Collapse
Affiliation(s)
- Angelina M Dichiera
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Alexis J Khursigara
- The University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Andrew J Esbaugh
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|