1
|
Nengovhela A, Ivy CM, Scott GR, Denys C, Taylor PJ. Counter-gradient variation and the expensive tissue hypothesis explain parallel brain size reductions at high elevation in cricetid and murid rodents. Sci Rep 2023; 13:5617. [PMID: 37024565 PMCID: PMC10079977 DOI: 10.1038/s41598-023-32498-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
To better understand functional morphological adaptations to high elevation (> 3000 m above sea level) life in both North American and African mountain-associated rodents, we used microCT scanning to acquire 3D images and a 3D morphometric approach to calculate endocranial volumes and skull lengths. This was done on 113 crania of low-elevation and high-elevation populations in species of North American cricetid mice (two Peromyscus species, n = 53), and African murid rodents of two tribes, Otomyini (five species, n = 49) and Praomyini (four species, n = 11). We tested two distinct hypotheses for how endocranial volume might vary in high-elevation populations: the expensive tissue hypothesis, which predicts that brain and endocranial volumes will be reduced to lessen the costs of growing and maintaining a large brain; and the brain-swelling hypothesis, which predicts that endocranial volumes will be increased either as a direct phenotypic effect or as an adaptation to accommodate brain swelling and thus minimize pathological symptoms of altitude sickness. After correcting for general allometric variation in cranial size, we found that in both North American Peromyscus mice and African laminate-toothed (Otomys) rats, highland rodents had smaller endocranial volumes than lower-elevation rodents, consistent with the expensive tissue hypothesis. In the former group, Peromyscus mice, crania were obtained not just from wild-caught mice from high and low elevations but also from those bred in common-garden laboratory conditions from parents caught from either high or low elevations. Our results in these mice showed that brain size responses to elevation might have a strong genetic basis, which counters an opposite but weaker environmental effect on brain volume. These results potentially suggest that selection may act to reduce brain volume across small mammals at high elevations but further experiments are needed to assess the generality of this conclusion and the nature of underlying mechanisms.
Collapse
Affiliation(s)
- Aluwani Nengovhela
- Department of Mammalogy, National Museum, Bloemfontein, 9300, South Africa.
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, Thohoyandou, South Africa.
| | - Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 57 Rue Cuvier, 75005, Paris, France
| | - Peter J Taylor
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, Thohoyandou, South Africa
- Afromontane Unit, Department of Zoology and Entomology, University of the Free State, Phuthaditjhaba, South Africa
| |
Collapse
|
2
|
Wearing OH, Scott GR. Evolved reductions in body temperature and the metabolic costs of thermoregulation in deer mice native to high altitude. Proc Biol Sci 2022; 289:20221553. [PMID: 36168757 PMCID: PMC9515628 DOI: 10.1098/rspb.2022.1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
The evolution of endothermy was instrumental to the diversification of birds and mammals, but the energetic demands of maintaining high body temperature could offset the advantages of endothermy in some environments. We hypothesized that reductions in body temperature help high-altitude natives overcome the metabolic challenges of cold and hypoxia in their native environment. Deer mice (Peromyscus maniculatus) from high-altitude and low-altitude populations were bred in captivity to the second generation and were acclimated as adults to warm normoxia or cold hypoxia. Subcutaneous temperature (Tsub, used as a proxy for body temperature) and cardiovascular function were then measured throughout the diel cycle using biotelemetry. Cold hypoxia increased metabolic demands, as reflected by increased food consumption and heart rate (associated with reduced vagal tone). These increased metabolic demands were offset by plastic reductions in Tsub (approx. 2°C) in response to cold hypoxia, and highlanders had lower Tsub (approx. 1°C) than lowlanders in both environmental treatments. Empirical and theoretical evidence suggested that these reductions could together reduce metabolic demands by approximately 10-30%. Therefore, plastic and evolved reductions in body temperature can help mammals overcome the metabolic challenges at high altitude and may be a valuable energy-saving strategy in some non-hibernating endotherms in extreme environments.
Collapse
Affiliation(s)
- Oliver H. Wearing
- Department of Biology, McMaster University, Life Sciences Building, 1280 Main Street W, Hamilton, ON, Canada L8S 4K1
| | - Graham R. Scott
- Department of Biology, McMaster University, Life Sciences Building, 1280 Main Street W, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
3
|
Dawson NJ, Scott GR. Adaptive increases in respiratory capacity and O 2 affinity of subsarcolemmal mitochondria from skeletal muscle of high-altitude deer mice. FASEB J 2022; 36:e22391. [PMID: 35661419 DOI: 10.1096/fj.202200219r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
Aerobic energy demands have led to the evolution of complex mitochondrial reticula in highly oxidative muscles, but the extent to which metabolic challenges can be met with adaptive changes in physiology of specific mitochondrial fractions remains unresolved. We examined mitochondrial mechanisms supporting adaptive increases in aerobic performance in deer mice (Peromyscus maniculatus) adapted to the hypoxic environment at high altitude. High-altitude and low-altitude mice were born and raised in captivity, and exposed as adults to normoxia or hypobaric hypoxia (12 kPa O2 for 6-8 weeks). Subsarcolemmal and intermyofibrillar mitochondria were isolated from the gastrocnemius, and a comprehensive substrate titration protocol was used to examine mitochondrial physiology and O2 kinetics by high-resolution respirometry and fluorometry. High-altitude mice had greater yield, respiratory capacity for oxidative phosphorylation, and O2 affinity (lower P50 ) of subsarcolemmal mitochondria compared to low-altitude mice across environments, but there were no species difference in these traits in intermyofibrillar mitochondria. High-altitude mice also had greater capacities of complex II relative to complexes I + II and higher succinate dehydrogenase activities in both mitochondrial fractions. Exposure to chronic hypoxia reduced reactive oxygen species (ROS) emission in high-altitude mice but not in low-altitude mice. Our findings suggest that functional changes in subsarcolemmal mitochondria contribute to improving aerobic performance in hypoxia in high-altitude deer mice. Therefore, physiological variation in specific mitochondrial fractions can help overcome the metabolic challenges of life at high altitude.
Collapse
Affiliation(s)
- Neal J Dawson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Knight K. Deer mice mums prioritise themselves for high-altitude success. J Exp Biol 2021. [DOI: 10.1242/jeb.242545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|