1
|
Glass BH, Jones KG, Ye AC, Dworetzky AG, Barott KL. Acute heat priming promotes short-term climate resilience of early life stages in a model sea anemone. PeerJ 2023; 11:e16574. [PMID: 38077426 PMCID: PMC10704996 DOI: 10.7717/peerj.16574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Across diverse taxa, sublethal exposure to abiotic stressors early in life can lead to benefits such as increased stress tolerance upon repeat exposure. This phenomenon, known as hormetic priming, is largely unexplored in early life stages of marine invertebrates, which are increasingly threatened by anthropogenic climate change. To investigate this phenomenon, larvae of the sea anemone and model marine invertebrate Nematostella vectensis were exposed to control (18 °C) or elevated (24 °C, 30 °C, 35 °C, or 39 °C) temperatures for 1 h at 3 days post-fertilization (DPF), followed by return to control temperatures (18 °C). The animals were then assessed for growth, development, metabolic rates, and heat tolerance at 4, 7, and 11 DPF. Priming at intermediately elevated temperatures (24 °C, 30 °C, or 35 °C) augmented growth and development compared to controls or priming at 39 °C. Indeed, priming at 39 °C hampered developmental progression, with around 40% of larvae still in the planula stage at 11 DPF, in contrast to 0% for all other groups. Total protein content, a proxy for biomass, and respiration rates were not significantly affected by priming, suggesting metabolic resilience. Heat tolerance was quantified with acute heat stress exposures, and was significantly higher for animals primed at intermediate temperatures (24 °C, 30 °C, or 35 °C) compared to controls or those primed at 39 °C at all time points. To investigate a possible molecular mechanism for the observed changes in heat tolerance, the expression of heat shock protein 70 (HSP70) was quantified at 11 DPF. Expression of HSP70 significantly increased with increasing priming temperature, with the presence of a doublet band for larvae primed at 39 °C, suggesting persistent negative effects of priming on protein homeostasis. Interestingly, primed larvae in a second cohort cultured to 6 weeks post-fertilization continued to display hormetic growth responses, whereas benefits for heat tolerance were lost; in contrast, negative effects of short-term exposure to extreme heat stress (39 °C) persisted. These results demonstrate that some dose-dependent effects of priming waned over time while others persisted, resulting in heterogeneity in organismal performance across ontogeny following priming. Overall, these findings suggest that heat priming may augment the climate resilience of marine invertebrate early life stages via the modulation of key developmental and physiological phenotypes, while also affirming the need to limit further anthropogenic ocean warming.
Collapse
Affiliation(s)
- Benjamin H. Glass
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katelyn G. Jones
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Angela C. Ye
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anna G. Dworetzky
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katie L. Barott
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Lee J, Secor R, Prokopyeva N, Chen X, Macdonald O, Frost R, Finnerty JR. TEMPERATURE AND SALINITY AFFECT DEVELOPMENT OF THE PARASITIC SEA ANEMONE EDWARDSIELLA LINEATA POTENTIALLY LIMITING ITS IMPACT AS A BIOLOGICAL CONTROL ON THE CTENOPHORE MNEMIOPSIS LEIDYI. J Parasitol 2023; 109:574-579. [PMID: 38104628 DOI: 10.1645/23-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The lined sea anemone, Edwardsiella lineata, parasitizes the ctenophore Mnemiopsis leidyi, which is one of the most destructive marine invasive species in the world. Mnemiopsis leidyi is known to tolerate a wide range of environmental conditions. However, the environmental tolerances of its most prominent parasite have never been characterized. Here we determined the effects of temperature (18, 22, 26, and 30 C) and salinity (6, 15, 24, and 33 ppt) on the survival and development of E. lineata from a vermiform parasite to a free-living polyp. At higher temperatures and lower salinities, E. lineata experienced significantly higher mortality, and it failed to develop into an adult polyp at the highest temperature (30 C) and lowest salinities we tested (6 ppt or 15 ppt). While such temperature and salinity restrictions would not currently prevent E. lineata from infecting M. leidyi in many of the European waters where it has become a destructive invasive species, these environmental limitations may be reducing overlap between host and parasite within the host's native range, a situation that could be exacerbated by climate change.
Collapse
Affiliation(s)
- Joanna Lee
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215
| | - Riley Secor
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215
| | - Nadiya Prokopyeva
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215
| | - Xuqing Chen
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215
| | - Ophelia Macdonald
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215
| | - Ryan Frost
- Department of Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston, Massachusetts 02215
| | - John R Finnerty
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215
| |
Collapse
|
3
|
Glass BH, Schmitt AH, Brown KT, Speer KF, Barott KL. Parental exposure to ocean acidification impacts gamete production and physiology but not offspring performance in Nematostella vectensis. Biol Open 2023; 12:bio059746. [PMID: 36716103 PMCID: PMC10003076 DOI: 10.1242/bio.059746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Ocean acidification (OA) resulting from anthropogenic CO2 emissions is impairing the reproduction of marine organisms. While parental exposure to OA can protect offspring via carryover effects, this phenomenon is poorly understood in many marine invertebrate taxa. Here, we examined how parental exposure to acidified (pH 7.40) versus ambient (pH 7.72) seawater influenced reproduction and offspring performance across six gametogenic cycles (13 weeks) in the estuarine sea anemone Nematostella vectensis. Females exhibited reproductive plasticity under acidic conditions, releasing significantly fewer but larger eggs compared to ambient females after 4 weeks of exposure, and larger eggs in two of the four following spawning cycles despite recovering fecundity, indicating long-term acclimatization and greater investment in eggs. Males showed no changes in fecundity under acidic conditions but produced a greater percentage of sperm with high mitochondrial membrane potential (MMP; a proxy for elevated motility), which corresponded with higher fertilization rates relative to ambient males. Finally, parental exposure to acidic conditions did not significantly influence offspring development rates, respiration rates, or heat tolerance. Overall, this study demonstrates that parental exposure to acidic conditions impacts gamete production and physiology but not offspring performance in N. vectensis, suggesting that increased investment in individual gametes may promote fitness.
Collapse
Affiliation(s)
- Benjamin H. Glass
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angela H. Schmitt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen T. Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelsey F. Speer
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katie L. Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Jiang L, Liu CY, Cui G, Huang LT, Yu XL, Sun YF, Tong HY, Zhou GW, Yuan XC, Hu YS, Zhou WL, Aranda M, Qian PY, Huang H. Rapid shifts in thermal reaction norms and tolerance of brooded coral larvae following parental heat acclimation. Mol Ecol 2023; 32:1098-1116. [PMID: 36528869 DOI: 10.1111/mec.16826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Thermal priming of reef corals can enhance their heat tolerance; however, the legacy effects of heat stress during parental brooding on larval resilience remain understudied. This study investigated whether preconditioning adult coral Pocillopora damicornis to high temperatures (29°C and 32°C) could better prepare their larvae for heat stress. Results showed that heat-acclimated adults brooded larvae with reduced symbiont density and shifted thermal performance curves. Reciprocal transplant experiments demonstrated higher bleaching resistance and better photosynthetic and autotrophic performance in heat-exposed larvae from acclimated adults compared to unacclimated adults. RNA-seq revealed strong cellular stress responses in larvae from heat-acclimated adults that could have been effective in rescuing host cells from stress, as evidenced by the widespread upregulation of genes involved in cell cycle and mitosis. For symbionts, a molecular coordination between light harvesting, photoprotection and carbon fixation was detected in larvae from heat-acclimated adults, which may help optimize photosynthetic activity and yield under high temperature. Furthermore, heat acclimation led to opposing regulations of symbiont catabolic and anabolic pathways and favoured nutrient translocation to the host and thus a functional symbiosis. Notwithstanding, the improved heat tolerance was paralleled by reduced light-enhanced dark respiration, indicating metabolic depression for energy saving. Our findings suggest that adult heat acclimation can rapidly shift thermal tolerance of brooded coral larvae and provide integrated physiological and molecular evidence for this adaptive plasticity, which could increase climate resilience. However, the metabolic depression may be maladaptive for long-term organismal performance, highlighting the importance of curbing carbon emissions to better protect corals.
Collapse
Affiliation(s)
- Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Cheng-Yue Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Guoxin Cui
- Biological and Environmental Sciences and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lin-Tao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Lei Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - You-Fang Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Hao-Ya Tong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Guo-Wei Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Xiang-Cheng Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Yi-Si Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wen-Liang Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Manuel Aranda
- Biological and Environmental Sciences and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
5
|
Ragsdale A, Ortega-Recalde O, Dutoit L, Besson AA, Chia JHZ, King T, Nakagawa S, Hickey A, Gemmell NJ, Hore T, Johnson SL. Paternal hypoxia exposure primes offspring for increased hypoxia resistance. BMC Biol 2022; 20:185. [PMID: 36038899 PMCID: PMC9426223 DOI: 10.1186/s12915-022-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In a time of rapid environmental change, understanding how the challenges experienced by one generation can influence the fitness of future generations is critically needed. Using tolerance assays and transcriptomic and methylome approaches, we use zebrafish as a model to investigate cross-generational acclimation to hypoxia. RESULTS We show that short-term paternal exposure to hypoxia endows offspring with greater tolerance to acute hypoxia. We detected two hemoglobin genes that are significantly upregulated by more than 6-fold in the offspring of hypoxia exposed males. Moreover, the offspring which maintained equilibrium the longest showed greatest upregulation in hemoglobin expression. We did not detect differential methylation at any of the differentially expressed genes, suggesting that other epigenetic mechanisms are responsible for alterations in gene expression. CONCLUSIONS Overall, our findings suggest that an epigenetic memory of past hypoxia exposure is maintained and that this environmentally induced information is transferred to subsequent generations, pre-acclimating progeny to cope with hypoxic conditions.
Collapse
Affiliation(s)
| | | | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Anne A Besson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Jolyn H Z Chia
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Tania King
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Anthony Hickey
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Timothy Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sheri L Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
Denny MW, Dowd WW. Physiological Consequences of Oceanic Environmental Variation: Life from a Pelagic Organism's Perspective. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:25-48. [PMID: 34314598 DOI: 10.1146/annurev-marine-040221-115454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To better understand life in the sea, marine scientists must first quantify how individual organisms experience their environment, and then describe how organismal performance depends on that experience. In this review, we first explore marine environmental variation from the perspective of pelagic organisms, the most abundant life forms in the ocean. Generation time, the ability to move relative to the surrounding water (even slowly), and the presence of environmental gradients at all spatial scales play dominant roles in determining the variation experienced by individuals, but this variation remains difficult to quantify. We then use this insight to critically examine current understanding of the environmental physiology of pelagic marine organisms. Physiologists have begun to grapple with the complexity presented by environmental variation, and promising frameworks exist for predicting and/or interpreting the consequences for physiological performance. However, new technology needs to be developed and much difficult empirical work remains, especially in quantifying response times to environmental variation and the interactions among multiple covarying factors. We call on the field of global-change biology to undertake these important challenges.
Collapse
Affiliation(s)
- Mark W Denny
- Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA;
| | - W Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|