1
|
Wang X, Cong R, Li A, Wang W, Zhang G, Li L. Transgenerational effects of intertidal environment on physiological phenotypes and DNA methylation in Pacific oysters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162112. [PMID: 36764539 DOI: 10.1016/j.scitotenv.2023.162112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/16/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Climate change and intensifying human activity are posing serious threats to marine organisms. The fluctuating intertidal zone forms a miniature ecosystem of a rapidly changing environment for studying biological adaptation. Transgenerational plasticity (TGP), an evolutionary phenomenon in which parental experience influences offspring phenotypes, provides an avenue for adaptation, but the molecular mechanism was poorly understood in marine molluscs. In this study, wild Pacific oysters (Crassostrea gigas), which were collected from intertidal zones, were used to conduct two-generation breeding in a subtidal area combined with a heat shock experiment in the laboratory to investigate the intertidal environment-induced TGP under temperate subtidal condition and thermally exposed condition, respectively. We showed that TGP could influence the physiological phenotypes related to the status of oxidation and energy in non-stress-exposed subtidal offspring for at least two generations. Genomic DNA methylation exhibited heritable divergence between intertidal and subtidal oysters, and 1655 (or 42.83 %) differentially methylated genes (DMGs) in F0 were continuously reserved to F2, which may mediate physiological TGP by participating in biological processes including macromolecule metabolism, cellular responses to stress, and the positive regulation of molecular function, especially fatty acid metabolism. The intertidal experience also influenced the thermal plasticity of physiological phenotypes within and across generations. Totally, 320 (or 14.74 %) specific thermal response DMGs in the intertidal F0 generation were identified in F1 and F2, participating in pathways including carbohydrate, lipid, and energy metabolism, signal transduction, and the organismal immune system, which suggested transgenerational intertidal effect mediated by these genes could positively contribute to stress adaptation and had potential applications for aquaculture. This study demonstrates an epigenetic mechanism for TGP in stress adaptation in marine molluscs, and provides new avenues to improve the stress adaptation for marine resource conservation and aquaculture.
Collapse
Affiliation(s)
- Xinxing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China.
| |
Collapse
|
2
|
Gibbs MC, Parker LM, Scanes E, Byrne M, O'Connor WA, Ross PM. Energetic lipid responses of larval oysters to ocean acidification. MARINE POLLUTION BULLETIN 2021; 168:112441. [PMID: 33991985 DOI: 10.1016/j.marpolbul.2021.112441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Climate change will increase energetic demands on marine invertebrate larvae and make planktonic food more unpredictable. This study determined the impact of ocean acidification on larval energetics of the oysters Saccostrea glomerata and Crassostrea gigas. Larvae of both oysters were reared until the 9-day-old, umbonate stage under orthogonal combinations of ambient and elevated p CO 2 (340 and 856 μatm) and food was limited. Elevated p CO 2 reduced the survival, size and larval energetics, larvae of C. gigas being more resilient than S. glomerata. When larvae were fed, elevated p CO 2 reduced lipid levels across all lipid classes. When larvae were unfed elevated p CO 2 resulted in increased lipid levels and mortality. Ocean acidification and food will interact to limit larval energetics. Larvae of S. glomerata will be more impacted than C. gigas and this is of concern given their aquacultural status and ecological function.
Collapse
Affiliation(s)
- Mitchell C Gibbs
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia; The Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
| | - Laura M Parker
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia; The University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, New South Wales 2052, Australia
| | - Elliot Scanes
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia; The Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
| | - Maria Byrne
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia; The Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Pauline M Ross
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia; The Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia.
| |
Collapse
|