1
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
2
|
Gao C, Nie H. Exploring the Heat-Responsive miRNAs and their Target Gene Regulation in Ruditapes philippinarum Under Acute Heat Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:810-826. [PMID: 39046591 DOI: 10.1007/s10126-024-10348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
This study aimed to investigate the inherent molecular regulatory mechanisms of Ruditapes philippinarum in response to extremely high-temperature environments and to enhance the sustainable development of the R. philippinarum aquaculture industry. In this study, we established a differential expression profile of miRNA under acute heat stress and identified a total of 46 known miRNAs and 80 novel miRNAs, three of which were detected to be significantly differentially expressed. We analyzed the functions of target genes regulated by differentially expressed miRNAs (DEMs) of R. philippinarum. The findings of the KEGG enrichment analysis revealed that 29 enriched pathways in the group were subjected to acute heat stress. Notably, fatty acid metabolism, FoxO signaling pathway, TGF-β signaling pathway, and ubiquitin-mediated proteolysis were found to play significant roles in response to acute heat stress. We established a regulatory map of DEMs and their target genes in response to heat stress and constructed the miRNA-mRNA regulation network. This study provides valuable insights into the response of R. philippinarum to high temperature, helping to understand its underlying molecular regulatory mechanisms under high-temperature stress.
Collapse
Affiliation(s)
- Changsheng Gao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
3
|
Meza-Buendia AK, Aparicio-Trejo OE, Díaz F, Pedraza-Chaverri J, Álvarez-Delgado C, Rosas C. Climate change consequences on the systemic heart of female Octopus maya: oxidative phosphorylation assessment and the antioxidant system. Biol Open 2024; 13:bio060103. [PMID: 38752595 PMCID: PMC11155352 DOI: 10.1242/bio.060103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/05/2024] [Indexed: 06/09/2024] Open
Abstract
There is evidence that indicates that temperature modulates the reproduction of the tropical species Octopus maya, through the over- or under-expression of many genes in the brain. If the oxygen supply to the brain depends on the circulatory system, how temperature affects different tissues will begin in the heart, responsible for pumping the oxygen to tissues. The present study examines the impact of heat stress on the mitochondrial function of the systemic heart of adult O. maya. The mitochondrial metabolism and antioxidant defense system were measured in the systemic heart tissue of female organisms acclimated to different temperatures (24, 26, and 30°C). The results show that acclimation temperature affects respiratory State 3 and State 4o (oligomycin-induced) with higher values observed in females acclimated at 26°C. The antioxidant defense system is also affected by acclimation temperature with significant differences observed in superoxide dismutase, glutathione S-transferase activities, and glutathione levels. The results suggest that high temperatures (30°C) could exert physical limitations on the circulatory system through the heart pumping, affecting nutrient and oxygen transport to other tissues, including the brain, which exerts control over the reproductive system. The role of the cardiovascular system in supporting aerobic metabolism in octopus females is discussed.
Collapse
Affiliation(s)
- Ana Karen Meza-Buendia
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860Ensenada, Baja California, México
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología “Ignacio Chávez”, 14080 Ciudad de México, México
| | - Fernando Díaz
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860Ensenada, Baja California, México
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Carolina Álvarez-Delgado
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860 Ensenada, Baja California, México
| | - Carlos Rosas
- Laboratorio de Ecofisiología Aplicada, Unidad Multidisciplinaria de Docencia e Investigación, de Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, 97356 Puerto de Abrigo, Sisal, Yucatán, México
| |
Collapse
|
4
|
Graziano M, Solberg MF, Glover KA, Vasudeva R, Dyrhovden L, Murray D, Immler S, Gage MJG. Pre-fertilization gamete thermal environment influences reproductive success, unmasking opposing sex-specific responses in Atlantic salmon ( Salmo salar). ROYAL SOCIETY OPEN SCIENCE 2023; 10:231427. [PMID: 38094267 PMCID: PMC10716643 DOI: 10.1098/rsos.231427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024]
Abstract
The environment gametes perform in just before fertilization is increasingly recognized to affect offspring fitness, yet the contributions of male and female gametes and their adaptive significance remain largely unexplored. Here, we investigated gametic thermal plasticity and its effects on hatching success and embryo performance in Atlantic salmon (Salmo salar). Eggs and sperm were incubated overnight at 2°C or 8°C, temperatures within the optimal thermal range of this species. Crosses between warm- and cold-incubated gametes were compared using a full-factorial design, with half of each clutch reared in cold temperatures and the other in warm temperatures. This allowed disentangling single-sex interaction effects when pre-fertilization temperature of gametes mismatched embryonic conditions. Pre-fertilization temperature influenced hatch timing and synchrony, and matching sperm and embryo temperatures resulted in earlier hatching. Warm incubation benefited eggs but harmed sperm, reducing the hatching success and, overall, gametic thermal plasticity did not enhance offspring fitness, indicating vulnerability to thermal changes. We highlight the sensitivity of male gametes to higher temperatures, and that gamete acclimation may not effectively buffer against deleterious effects of thermal fluctuations. From an applied angle, we propose the differential storage of male and female gametes as a tool to enhance sustainability within the hatcheries.
Collapse
Affiliation(s)
- Marco Graziano
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Monica F. Solberg
- Population Genetics Group, Institute of Marine Research, 5817 Bergen, Norway
| | - Kevin A. Glover
- Population Genetics Group, Institute of Marine Research, 5817 Bergen, Norway
| | - Ramakrishnan Vasudeva
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Lise Dyrhovden
- Population Genetics Group, Institute of Marine Research, 5817 Bergen, Norway
| | - David Murray
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Lowestoft NR33 0HT, UK
| | - Simone Immler
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Matthew J. G. Gage
- Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
5
|
Gurr SJ, Trigg SA, Vadopalas B, Roberts SB, Putnam HM. Acclimatory gene expression of primed clams enhances robustness to elevated pCO 2. Mol Ecol 2022; 31:5005-5023. [PMID: 35947503 DOI: 10.1111/mec.16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Sub-lethal exposure to environmental challenges may enhance ability to cope with chronic or repeated change, a process known as priming. In a previous study, pre-exposure to seawater enriched with pCO2 improved growth and reduced antioxidant capacity of juvenile Pacific geoduck Panopea generosa, suggesting that transcriptional shifts may drive phenotypic modifications post-priming. To this end, juvenile clams were sampled and TagSeq gene expression data analyzed after 1) a 110-day acclimation under ambient (921 μatm, naïve) and moderately-elevated pCO2 (2870 μatm, pre-exposed); then following 2) a second 7-day exposure to three pCO2 treatments (ambient: 754 μatm; moderately-elevated: 2750 μatm; severely-elevated: 4940 μatm), a 7-day return to ambient pCO2 , and a third 7-day exposure to two pCO2 treatments (ambient: 967 μatm; moderately-elevated: 3030 μatm). Pre-exposed geoducks frontloaded genes for stress and apoptosis/innate immune response, homeostatic processes, protein degradation, and transcriptional modifiers. Pre-exposed geoducks were also responsive to subsequent encounters, with gene sets enriched for mitochondrial recycling and immune defense under elevated pCO2 and energy metabolism and biosynthesis under ambient recovery. In contrast, gene sets with higher expression in naïve clams were enriched for fatty-acid degradation and glutathione components, suggesting naïve clams could be depleting endogenous fuels, with unsustainable energetic requirements if changes in carbonate chemistry persist. Collectively, our transcriptomic data indicates pCO2 priming during post-larval periods could, via gene expression regulation, enhance robustness in bivalves to environmental change. Such priming approaches may be beneficial for aquaculture, as seafood demand intensifies concurrent with increasing climate change in marine systems.
Collapse
Affiliation(s)
- Samuel J Gurr
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Shelly A Trigg
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, USA
| | | | - Steven B Roberts
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
6
|
Menail HA, Cormier SB, Ben Youssef M, Jørgensen LB, Vickruck JL, Morin P, Boudreau LH, Pichaud N. Flexible Thermal Sensitivity of Mitochondrial Oxygen Consumption and Substrate Oxidation in Flying Insect Species. Front Physiol 2022; 13:897174. [PMID: 35547573 PMCID: PMC9081799 DOI: 10.3389/fphys.2022.897174] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Mitochondria have been suggested to be paramount for temperature adaptation in insects. Considering the large range of environments colonized by this taxon, we hypothesized that species surviving large temperature changes would be those with the most flexible mitochondria. We thus investigated the responses of mitochondrial oxidative phosphorylation (OXPHOS) to temperature in three flying insects: the honeybee (Apis mellifera carnica), the fruit fly (Drosophila melanogaster) and the Colorado potato beetle (Leptinotarsa decemlineata). Specifically, we measured oxygen consumption in permeabilized flight muscles of these species at 6, 12, 18, 24, 30, 36, 42 and 45°C, sequentially using complex I substrates, proline, succinate, and glycerol-3-phosphate (G3P). Complex I respiration rates (CI-OXPHOS) were very sensitive to temperature in honeybees and fruit flies with high oxygen consumption at mid-range temperatures but a sharp decline at high temperatures. Proline oxidation triggers a major increase in respiration only in potato beetles, following the same pattern as CI-OXPHOS for honeybees and fruit flies. Moreover, both succinate and G3P oxidation allowed an important increase in respiration at high temperatures in honeybees and fruit flies (and to a lesser extent in potato beetles). However, when reaching 45°C, this G3P-induced respiration rate dropped dramatically in fruit flies. These results demonstrate that mitochondrial functions are more resilient to high temperatures in honeybees compared to fruit flies. They also indicate an important but species-specific mitochondrial flexibility for substrate oxidation to sustain high oxygen consumption levels at high temperatures and suggest previously unknown adaptive mechanisms of flying insects’ mitochondria to temperature.
Collapse
Affiliation(s)
- Hichem A Menail
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Simon B Cormier
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Mariem Ben Youssef
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | | | - Jess L Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Pier Morin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Luc H Boudreau
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|