1
|
Hazlerigg DG, Simonneaux V, Dardente H. Melatonin and Seasonal Synchrony in Mammals. J Pineal Res 2024; 76:e12996. [PMID: 39129720 DOI: 10.1111/jpi.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
In mammals, seasonal opportunities and challenges are anticipated through programmed changes in physiology and behavior. Appropriate anticipatory timing depends on synchronization to the external solar year, achieved through the use of day length (photoperiod) as a synchronizing signal. In mammals, nocturnal production of melatonin by the pineal gland is the key hormonal mediator of photoperiodic change, exerting its effects via the hypothalamopituitary axis. In this review/perspective, we consider the key developments during the history of research into the seasonal synchronizer effect of melatonin, highlighting the role that the pars tuberalis-tanycyte module plays in this process. We go on to consider downstream pathways, which include discrete hypothalamic neuronal populations. Neurons that express the neuropeptides kisspeptin and (Arg)(Phe)-related peptide-3 (RFRP-3) govern seasonal reproductive function while neurons that express somatostatin may be involved in seasonal metabolic adaptations. Finally, we identify several outstanding questions, which need to be addressed to provide a much thorough understanding of the deep impact of melatonin upon seasonal synchronization.
Collapse
Affiliation(s)
- David G Hazlerigg
- Department of Arctic and Marine Biology, Arctic Chronobiology and Physiology Research Group, Arctic Seasonal Timekeeping Initiative (ASTI), UiT-The Arctic University of Norway, Tromsø, Norway
| | - Valérie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
2
|
Poissenot K, Trouillet AC, Trives E, Moussu C, Chesneau D, Meunier M, Lattard V, Chorfa A, Saez F, Drevet J, Le Danvic C, Nagnan-Le Meillour P, Chamero P, Keller M. Sexual discrimination and attraction through scents in the water vole, Arvicola terrestris. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:431-441. [PMID: 37690081 DOI: 10.1007/s00359-023-01671-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
In mammals, especially rodents, social behaviours, such as parenting, territoriality or mate attraction, are largely based on olfactory communication through chemosignals. These behaviours are mediated by species-specific chemosignals, including small organic molecules and proteins that are secreted in the urine or in various fluids from exocrine glands. Chemosignal detection is mainly ensured by olfactory neurons in two specific sensory organs, the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). This study aimed to characterise the olfactory communication in the fossorial ecotype of the water voles, Arvicola terrestris. We first measured the olfactory investigation of urine and lateral scent gland secretions from conspecifics. Our results showed that water voles can discriminate the sex of conspecifics based on the smell of urine, and that urinary male odour is attractive for female voles. Then, we demonstrated the ability of the VNO and MOE to detect volatile organic compounds (VOCs) found in water vole secretions using live-cell calcium imaging in dissociated cells. Finally, we evaluated the attractiveness of two mixtures of VOCs from urine or lateral scent glands in the field during a cyclical outbreak of vole populations.
Collapse
Affiliation(s)
- Kévin Poissenot
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | | | - Elliott Trives
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Chantal Moussu
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Didier Chesneau
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Maxime Meunier
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | | | - Areski Chorfa
- GReD, Université Clermont Auvergne, CNRS, Inserm, CRBC, Clermont-Ferrand, France
| | - Fabrice Saez
- GReD, Université Clermont Auvergne, CNRS, Inserm, CRBC, Clermont-Ferrand, France
| | - Joël Drevet
- GReD, Université Clermont Auvergne, CNRS, Inserm, CRBC, Clermont-Ferrand, France
| | | | | | - Pablo Chamero
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Matthieu Keller
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
3
|
Poissenot K, Moussu C, Brachet M, Chesneau D, Chemineau P, Lainé AL, Migaud M, Charbonnel N, Keller M. Population density does not affect seasonal regulation of reproductive physiology in male water voles. Biol Lett 2023; 19:20220441. [PMID: 36815586 PMCID: PMC9945398 DOI: 10.1098/rsbl.2022.0441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Most small rodent species display cyclic fluctuations in their population density. The mechanisms behind these cyclical variations are not yet clearly understood. Density-dependent effects on reproductive function could affect these population variations. The fossorial water vole ecotype, Arvicola terrestris, exhibits multi-year cyclical dynamics with outbreak peaks. Here, we monitored different water vole populations over 3 years, in spring and autumn, to evaluate whether population density is related to male reproductive physiology. Our results show an effect of season and inter-annual factors on testis mass, plasmatic testosterone level, and androgen-dependent seminal vesicle mass. By contrast, population density does not affect any of these parameters, suggesting a lack of modulation of population dynamics by population density.
Collapse
Affiliation(s)
- Kevin Poissenot
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Chantal Moussu
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Morgane Brachet
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Didier Chesneau
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Philippe Chemineau
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Anne-Lyse Lainé
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Martine Migaud
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Nathalie Charbonnel
- Centre de Biologie pour la Gestion des Populations, UMR INRAE, CIRAD, Institut Agro, IRD, Univ Montpellier, Montpellier, France
| | - Matthieu Keller
- Physiologie de la Reproduction et des Comportements, UMR INRAE, CNRS, Université de Tours, IFCE, Nouzilly, France
| |
Collapse
|
4
|
Dardente H, Simonneaux V. GnRH and the photoperiodic control of seasonal reproduction: Delegating the task to kisspeptin and RFRP-3. J Neuroendocrinol 2022; 34:e13124. [PMID: 35384117 DOI: 10.1111/jne.13124] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Synchronization of mammalian breeding activity to the annual change of photoperiod and environmental conditions is of the utmost importance for individual survival and species perpetuation. Subsequent to the early 1960s, when the central role of melatonin in this adaptive process was demonstrated, our comprehension of the mechanisms through which light regulates gonadal activity has increased considerably. The current model for the photoperiodic neuroendocrine system points to pivotal roles for the melatonin-sensitive pars tuberalis (PT) and its seasonally-regulated production of thyroid-stimulating hormone (TSH), as well as for TSH-sensitive hypothalamic tanycytes, radial glia-like cells located in the basal part of the third ventricle. Tanycytes respond to TSH through increased expression of thyroid hormone (TH) deiodinase 2 (Dio2), which leads to heightened production of intrahypothalamic triiodothyronine (T3) during longer days of spring and summer. There is strong evidence that this local, long-day driven, increase in T3 links melatonin input at the PT to gonadotropin-releasing hormone (GnRH) output, to align breeding with the seasons. The mechanism(s) through which T3 impinges upon GnRH remain(s) unclear. However, two distinct neuronal populations of the medio-basal hypothalamus, which express the (Arg)(Phe)-amide peptides kisspeptin and RFamide-related peptide-3, appear to be well-positioned to relay this seasonal T3 message towards GnRH neurons. Here, we summarize our current understanding of the cellular, molecular and neuroendocrine players, which keep track of photoperiod and ultimately govern GnRH output and seasonal breeding.
Collapse
Affiliation(s)
- Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Valérie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| |
Collapse
|