1
|
Piñeirua M, Verbe A, Casas J. Substrate-mediated leg interactions play a key role in insect stability on granular slopes. Phys Rev E 2023; 108:014903. [PMID: 37583161 DOI: 10.1103/physreve.108.014903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/26/2023] [Indexed: 08/17/2023]
Abstract
Locomotion on granular inclines is a subject of high relevance in ecological physics as well as in biomimmetics and robotics. Enhancing stability on granular materials represents a huge challenge due to the fluidization transition when inclination approaches the avalanche angle. Our motivating example is the predator-prey system made of the antlion, its pit, and its prey. Recent studies have demonstrated that stability on granular inclines strongly depends on the pressure exerted on the substrate. In this work we show that for multilegged locomotion, along with pressure, the distance between the leg contacts on the substrate also plays a major role in the determination of the stability threshold. Through a set of model experiments using artificial sliders, we determine a critical distance below which stability is importantly affected by the interactions between the perturbed regions generated by each contact point. A simple model based on the Coulomb method of wedges allows us to estimate a stability criterion based on pressure, interleg distance, and substrate characteristics. Our work suggests that mass to leg-length allometric relationships, as the ones observed in ants, may be an important key in determining the locomotion success of multilegged locomotion on granular inclines.
Collapse
Affiliation(s)
- Miguel Piñeirua
- Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais, 37000 Tours, France
| | - Anna Verbe
- Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais, 37000 Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais, 37000 Tours, France
| |
Collapse
|
2
|
Leong CM, Hui TY, Guénard B. The role of body mass in limiting post heat-coma recovery ability in terrestrial ectotherms. Ecol Evol 2023; 13:e10218. [PMID: 37361898 PMCID: PMC10288262 DOI: 10.1002/ece3.10218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Under global warming, animal species show shrinking body size responses, cascading deep changes in community structure and ecosystem functions. Although the exact physiological mechanisms behind this phenomenon remain unsolved, smaller individuals may benefit from warming climate more than larger ones. Heat-coma, a physiological state with severe consequences on locomotion ability, is often considered as an "ecological death" scenario under which individuals are unable to escape and exposed to predation, further heat injury, and other hazards. Species are expected to increasingly encounter heat-coma temperature thresholds under warming climate, and body size may be an important trait for thermoregulation in particular for ectotherms. The relationship between heat-coma and shrinking body size remains, however, unclear. Yet, recovery after short-term heat-coma is possible, but little is known about its importance in thermal adaptation and how organismal size correlates with post heat-coma recovery. Here, using ants as a model system, we firstly examined the fate of heat-comatose individuals under field conditions to quantify the ecological benefits of post heat-coma recovery. Then, we quantified ants' recovery ability after heat-coma using a dynamic thermal assay in the laboratory and asked if thermal resilience varies between species with different body mass. Our results confirm that heat-coma represents an inherent ecological death where individuals failed to recover from coma suffer strong predation pressure. Additionally, following phylogenetic signals inclusion, organisms with small mass were more likely to recover, supporting the temperature-size rule in thermal adaptation and recent studies showing a decrease in body size composition of ectotherm community under warmer climatic conditions. Body size as a fundamental trait in ecology thus affects ectotherm survival under thermal stress, which may drive species body size adaptations and community composition under future warming scenarios.
Collapse
Affiliation(s)
- Chi Man Leong
- School of Biological SciencesThe University of Hong KongHong Kong SARChina
- Present address:
Environmental Science Programme, Department of Life Sciences, Faculty of Science and TechnologyBeijing Normal University‐Hong Kong Baptist University United International CollegeZhuhaiChina
| | - Tin Yan Hui
- School of Biological SciencesThe University of Hong KongHong Kong SARChina
- The Swire Institute of Marine ScienceThe University of Hong KongHong Kong SARChina
- Present address:
Science UnitLingnan UniversityHong Kong SARChina
| | - Benoit Guénard
- School of Biological SciencesThe University of Hong KongHong Kong SARChina
| |
Collapse
|
3
|
Deeti S, Cheng K, Graham P, Wystrach A. Scanning behaviour in ants: an interplay between random-rate processes and oscillators. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01628-8. [PMID: 37093284 DOI: 10.1007/s00359-023-01628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/05/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023]
Abstract
At the start of a journey home or to a foraging site, ants often stop, interrupting their forward movement, turn on the spot a number of times, and fixate in different directions. These scanning bouts are thought to provide visual information for choosing a path to travel. The temporal organization of such scanning bouts has implications about the neural organisation of navigational behaviour. We examined (1) the temporal distribution of the start of such scanning bouts and (2) the dynamics of saccadic body turns and fixations that compose a scanning bout in Australian desert ants, Melophorus bagoti, as they came out of a walled channel onto open field at the start of their homeward journey. Ants were caught when they neared their nest and displaced to different locations to start their journey home again. The observed parameters were mostly similar across familiar and unfamiliar locations. The turning angles of saccadic body turning to the right or left showed some stereotypy, with a peak just under 45°. The direction of such saccades appears to be determined by a slow oscillatory process as described in other insect species. In timing, however, both the distribution of inter-scanning-bout intervals and individual fixation durations showed exponential characteristics, the signature for a random-rate or Poisson process. Neurobiologically, therefore, there must be some process that switches behaviour (starting a scanning bout or ending a fixation) with equal probability at every moment in time. We discuss how chance events in the ant brain that occasionally reach a threshold for triggering such behaviours can generate the results.
Collapse
Affiliation(s)
- Sudhakar Deeti
- School of Natural Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, NSW 2019, Australia.
| | - Paul Graham
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Antoine Wystrach
- Centre de Recherches Sur La Cognition Animale, CBI, CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
4
|
Dürr V, Mesanovic A. Behavioural function and development of body-to-limb proportions and active movement ranges in three stick insect species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:265-284. [PMID: 35986777 PMCID: PMC10006035 DOI: 10.1007/s00359-022-01564-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Overall body proportions and relative limb length are highly characteristic for most insect taxa. In case of the legs, limb length has mostly been discussed with regard to parameters of locomotor performance and, in particular cases, as an adaptation to environmental factors or to the mating system. Here, we compare three species of stick and leaf insects (Phasmatodea) that differ strongly in the length ratio between antennae and walking legs, with the antennae of Medauroidea extradentata being much shorter than its legs, nearly equal length of antennae and legs in Carausius morosus, and considerably longer antennae than front legs in Aretaon asperrimus. We show that that relative limb length is directly related to the near-range exploration effort, with complementary function of the antennae and front legs irrespective of their length ratio. Assuming that these inter-species differences hold for both sexes and all developmental stages, we further explore how relative limb length differs between sexes and how it changes throughout postembryonic development. We show that the pattern of limb-to-body proportions is species-characteristic despite sexual dimorphism, and find that the change in sexual dimorphism is strongest during the last two moults. Finally, we show that antennal growth rate is consistently higher than that of front legs, but differs categorically between the species investigated. Whereas antennal growth rate is constant in Carausius, the antennae grow exponentially in Medauroidea and with a sudden boost during the last moult in Aretaon.
Collapse
Affiliation(s)
- Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
- Center for Cognitive Interaction Technology, Bielefeld University, 33615, Bielefeld, Germany.
| | - Ago Mesanovic
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| |
Collapse
|
5
|
From representations to servomechanisms to oscillators: my journey in the study of cognition. Anim Cogn 2023; 26:73-85. [PMID: 36029388 PMCID: PMC9877067 DOI: 10.1007/s10071-022-01677-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 01/29/2023]
Abstract
The study of comparative cognition bloomed in the 1970s and 1980s with a focus on representations in the heads of animals that undergird what animals can achieve. Even in action-packed domains such as navigation and spatial cognition, a focus on representations prevailed. In the 1990s, I suggested a conception of navigation in terms of navigational servomechanisms. A servomechanism can be said to aim for a goal, with deviations from the goal-directed path registering as an error. The error drives action to reduce the error in a negative-feedback loop. This loop, with the action reducing the very signal that drove action in the first place, is key to defining a servomechanism. Even though actions are crucial components of servomechanisms, my focus was on the representational component that encodes signals and evaluates errors. Recently, I modified and amplified this view in claiming that, in navigation, servomechanisms operate by modulating the performance of oscillators, endogenous units that produce periodic action. The pattern is found from bacteria travelling micrometres to sea turtles travelling thousands of kilometres. This pattern of servomechanisms working with oscillators is found in other realms of cognition and of life. I think that oscillators provide an effective way to organise an organism's own activities while servomechanisms provide an effective means to adjust to the organism's environment, including that of its own body.
Collapse
|
6
|
Tross J, Wolf H, Pfeffer SE. Influence of caste and subcaste characteristics in ant locomotion (Camponotus fellah). J Exp Biol 2022; 225:275528. [PMID: 35615922 DOI: 10.1242/jeb.243776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
Abstract
Worker polymorphism in ants has evolved repeatedly, with considerable differences in the morphometry of worker subcastes. Such body size differences and especially caste- and subcaste-specific characteristics might significantly influence locomotion. Therefore, we performed a comprehensive locomotion analysis along gradients in both body size and walking speed of Camponotus fellah worker subcastes, and of males, which have rarely been studied to date due to short life spans associated with mating flights. We provide a detailed description of the morphometry and size differences of C. fellah castes and subcastes and analyse locomotion in the different polymorphic groups in terms of absolute and relative walking speeds (mesosoma lengths per second). Our results reveal that body size and shape affect locomotion behaviour to different extents in the worker subcastes (minor workers, medias, major workers) and in males. Nevertheless, C. fellah ants use the same overall locomotion strategy, with males and major workers reaching considerably lower walking speeds than minors and medias. Body size thus mainly affects walking speed. Minor workers reach the highest relative velocities by high relative stride lengths in combination with large vertical and lateral COM oscillations and clearly higher stride frequencies of up to 25 Hz. Locomotion of males was characterised by clearly lower walking speeds, wider footprint positions, significant phase shifts and a notable dragging of the shorter hind legs. However, general walking parameters of males differed less from those of the female workers than expected due to division of labour in the colony.
Collapse
Affiliation(s)
- Johanna Tross
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
7
|
Cheng K. Oscillators and servomechanisms in orientation and navigation, and sometimes in cognition. Proc Biol Sci 2022; 289:20220237. [PMID: 35538783 PMCID: PMC9091845 DOI: 10.1098/rspb.2022.0237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Navigational mechanisms have been characterized as servomechanisms. A navigational servomechanism specifies a goal state to strive for. Discrepancies between the perceived current state and the goal state specify error. Servomechanisms adjust the course of travel to reduce the error. I now add that navigational servomechanisms work with oscillators, periodic movements of effectors that drive locomotion. I illustrate this concept selectively over a vast range of scales of travel from micrometres in bacteria to thousands of kilometres in sea turtles. The servomechanisms differ in sophistication, with some interrupting forward motion occasionally or changing travel speed in kineses and others adjusting the direction of travel in taxes. I suggest that in other realms of life as well, especially in cognition, servomechanisms work with oscillators.
Collapse
Affiliation(s)
- Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, North Ryde, NSW 2109, Australia
| |
Collapse
|
8
|
Tross J, Wolf H, Stemme T, Pfeffer SE. Locomotion in the pseudoscorpion Chelifer cancroides - forward, backward and upside down walking in an eight-legged arthropod. J Exp Biol 2022; 225:275033. [PMID: 35438154 DOI: 10.1242/jeb.243930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
While insect locomotion has been intensively studied, there are comparably few studies investigating octopedal walking behaviour, and very little is known about pseudoscorpions in particular. Therefore, we performed an extensive locomotion analysis during forward, backward and upside down walking in the cosmopolitan pseudoscorpion Chelifer cancroides. During forward locomotion, we observed C. cancroides to freeze locomotion frequently for short time periods. These microstops were barely visible to the naked eye with a duration of 100-200 ms. Our locomotion analysis revealed that C. cancroides performs a statically stable and highly coordinated alternating tetrapod gait during forward and backward walking, with almost complete inversion of the tetrapod schemes, but no rigidly fixed leg coordination during upside down walks with low walking speeds up to 4 body lengths per second. Highest speeds (up to 17 body lengths per second), mainly achieved by consistent leg coordination and strong phase shifts, were observed during backward locomotion (escape behaviour), while forward walking was characterised by lower speeds and phase shifts around 10% between two loosely coupled leg groups within one tetrapod. That is, during the movement of one tetrapod group, the last and the third leg are almost synchronous in their swing phases, as are the second and the first leg. A special role of the second leg pair was demonstrated, probably mainly for stability reasons and related to the large pedipalps.
Collapse
Affiliation(s)
- Johanna Tross
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Torben Stemme
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|