1
|
Maïga H, Lu D, Mamai W, Bimbilé Somda NS, Wallner T, Bakhoum MT, Bueno Masso O, Martina C, Kotla SS, Yamada H, Salvador Herranz G, Argiles Herrero R, Chong CS, Tan CH, Bouyer J. Standardization of the FAO/IAEA Flight Test for Quality Control of Sterile Mosquitoes. Front Bioeng Biotechnol 2022; 10:876675. [PMID: 35923573 PMCID: PMC9341283 DOI: 10.3389/fbioe.2022.876675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022] Open
Abstract
Successful implementation of the sterile insect technique (SIT) against Aedes aegypti and Aedes albopictus relies on maintaining a consistent release of high-quality sterile males. Affordable, rapid, practical quality control tools based on the male’s flight ability (ability to escape from a flight device) may contribute to meeting this requirement. Therefore, this study aims to standardize the use of the original FAO/IAEA rapid quality control flight test device (FTD) (version 1.0), while improving handling conditions and reducing the device’s overall cost by assessing factors that could impact the subsequent flight ability of Aedes mosquitoes. The new FTD (version 1.1) is easier to use. The most important factors affecting escape rates were found to be tube color (or “shade”), the combined use of a lure and fan, mosquito species, and mosquito age and density (25; 50; 75; 100 males). Other factors measured but found to be less important were the duration of the test (30, 60, 90, 120 min), fan speed (normal 3000 rpm vs. high 6000 rpm), and mosquito strain origin. In addition, a cheaper version of the FTD (version 2.0) that holds eight individual tubes instead of 40 was designed and successfully validated against the new FTD (version 1.1). It was sensitive enough to distinguish between the effects of cold stress and high irradiation dose. Therefore, the eight-tube FTD may be used to assess Aedes’ flight ability. This study demonstrated that the new designs (versions 1.1 and 2.0) of the FTD could be used for standard routine quality assessments of Aedes mosquitoes required for an SIT and other male release-based programs.
Collapse
Affiliation(s)
- Hamidou Maïga
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l’Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- *Correspondence: Hamidou Maïga, ,
| | - Deng Lu
- Environmental Health Institute, National Environnent Agency, Singapore, Singapore
| | - Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
- Institut de Recherche Agricole pour le Développement (IRAD), Yaoundé-Messa, Cameroon
| | - Nanwintoum Séverin Bimbilé Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
- Unité de Formation et de Recherche en Sciences et Technologies (UFR/ST), Université Norbert ZONGO (UNZ), Koudougou, Burkina Faso
| | - Thomas Wallner
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Mame Thierno Bakhoum
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
- Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Senegal
| | - Odet Bueno Masso
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Claudia Martina
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Simran Singh Kotla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Gustavo Salvador Herranz
- Technical School of Design, Architecture and Engineering, University CEU Cardenal Herrera, Valencia, Spain
| | - Rafael Argiles Herrero
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| | - Chee Seng Chong
- Environmental Health Institute, National Environnent Agency, Singapore, Singapore
| | - Cheong Huat Tan
- Environmental Health Institute, National Environnent Agency, Singapore, Singapore
| | - Jeremy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, Seibersdorf, Austria
| |
Collapse
|
2
|
Bonduriansky R, Creak C. Exoskeleton ageing and its relation to longevity and fecundity in female Australian leaf insects (. AUST J ZOOL 2022. [DOI: 10.1071/zo21052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Senescence is a decline in reproduction and survival rate with advancing age resulting from deterioration of somatic tissues and systems throughout the body. Age-related somatic changes (somatic ageing) have been studied extensively in vertebrates but are less well known in other animals, including insects. Since adult insects have very limited ability to repair their exoskeleton, somatic ageing could involve deterioration and discolouration of the cuticle. We investigated age-related changes in wing pigmentation and abdominal cuticle necrosis in females of the Australian leaf insect Phyllium monteithi. Adult females varied markedly in the extent and pattern of pigmentation on their bodies, and we found that pigment spots on the forewings increased in size with age in most individuals. As females aged, most individuals also exhibited increasing levels of abdominal cuticle necrosis, resulting in the loss of abdominal cuticle along the margin of the abdomen. Neither the extent of pigmentation nor cuticle loss were clearly associated with reduced fecundity or longevity in the protected laboratory environment, but it remains unknown whether these age-related changes have functional implications in the wild. Our results show that the P. monteithi exoskeleton undergoes complex changes with age, with potential implications for functional traits and fitness.
Collapse
|