1
|
Jangra S, Potts J, Ghosh A, Seal DR. Genome editing: A novel approach to manage insect vectors of plant viruses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104189. [PMID: 39341259 DOI: 10.1016/j.ibmb.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Insect vectors significantly threaten global agriculture by transmitting numerous plant viruses. Various measures, from conventional insecticides to genetic engineering, are used to mitigate this threat. However, none provide complete resistance. Therefore, researchers are looking for novel control options. In recent years with the advancements in genomic technologies, genomes and transcriptomes of various insect vectors have been generated. However, the lack of knowledge about gene functions hinders the development of novel strategies to restrict virus spread. RNA interference (RNAi) is widely used to elucidate gene functions, but its variable efficacy hampers its use in managing insect vectors and plant viruses. Genome editing has the potential to overcome these challenges and has been extensively used in various insect pest species. This review summarizes the progress and potential of genome editing in plant virus vectors and its application as a functional genomic tool to elucidate virus-vector interactions. We also discuss the major challenges associated with editing genes of interest in insect vectors.
Collapse
Affiliation(s)
- Sumit Jangra
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA.
| | - Jesse Potts
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dakshina R Seal
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| |
Collapse
|
2
|
Yan C, Wu Z, Liu Y, Sun Y, Zhang J. Comparative transcriptomic analysis primarily explores the molecular mechanism of compound eye formation in Neocaridina denticulata sinensis. BMC Genomics 2024; 25:570. [PMID: 38844864 PMCID: PMC11155044 DOI: 10.1186/s12864-024-10453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
Compound eyes formation in decapod crustaceans occurs after the nauplius stage. However, the key genes and regulatory mechanisms of compound eye development during crustacean embryonic development have not yet been clarified. In this study, RNA-seq was used to investigate the gene expression profiles of Neocaridina denticulata sinensis from nauplius to zoea stage. Based on RNA-seq data analysis, the phototransduction and insect hormone biosynthesis pathways were enriched, and molting-related neuropeptides were highly expressed. There was strong cell proliferation in the embryo prior to compound eye development. The formation of the visual system and the hormonal regulation of hatching were the dominant biological events during compound eye development. The functional analysis of DEGs across all four developmental stages showed that cuticle formation, muscle growth and the establishment of immune system occurred from nauplius to zoea stage. Key genes related to eye development were discovered, including those involved in the determination and differentiation of the eye field, eye-color formation, and visual signal transduction. In conclusion, the results increase the understanding of the molecular mechanism of eye formation in crustacean embryonic stage.
Collapse
Affiliation(s)
- Congcong Yan
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Zixuan Wu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yujie Liu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Szabała BM, Święcicka M, Łyżnik LA. Microinjection of the CRISPR/Cas9 editing system through the germ pore of a wheat microspore induces mutations in the target Ms2 gene. Mol Biol Rep 2024; 51:706. [PMID: 38824203 DOI: 10.1007/s11033-024-09644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Microinjection is a direct procedure for delivering various compounds via micropipette into individual cells. Combined with the CRISPR/Cas9 editing technology, it has been used to produce genetically engineered animal cells. However, genetic micromanipulation of intact plant cells has been a relatively unexplored area of research, partly due to the cytological characteristics of these cells. This study aimed to gain insight into the genetic micromanipulation of wheat microspores using microinjection procedures combined with the CRISPR/Cas9 editing system targeting the Ms2 gene. METHODS AND RESULTS Microspores were first reprogrammed by starvation and heat shock treatment to make them structurally suitable for microinjection. The large central vacuole was fragmented and the nucleus with cytoplasm was positioned in the center of the cell. This step and an additional maltose gradient provided an adequate source of intact single cells in the three wheat genotypes. The microcapillary was inserted into the cell through the germ pore to deliver a working solution with a fluorescent marker. This procedure was much more efficient and less harmful to the microspore than inserting the microcapillary through the cell wall. The CRISPR/Cas9 binary vectors injected into reprogrammed microspores induced mutations in the target Ms2 gene with deletions ranging from 1 to 16 bp. CONCLUSIONS This is the first report of successful genome editing in an intact microspore/wheat cell using the microinjection technique and the CRISPR/Cas9 editing system. The study presented offers a range of molecular and cellular biology tools that can aid in genetic micromanipulation and single-cell analysis.
Collapse
Affiliation(s)
- Bartosz M Szabała
- Institute of Biology, Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166 St, Warsaw, 02-787, Poland.
| | - Magdalena Święcicka
- Institute of Biology, Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166 St, Warsaw, 02-787, Poland
| | - Leszek A Łyżnik
- Institute of Biology, Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166 St, Warsaw, 02-787, Poland
| |
Collapse
|
4
|
Molcho J, Albagly D, Levy T, Manor R, Aflalo ED, Alfaro-Montoya J, Sagi A. Regulation of early spermatogenesis in the giant prawn Macrobrachium rosenbergii by a GCL homolog†. Biol Reprod 2024; 110:1000-1011. [PMID: 38408206 PMCID: PMC11094379 DOI: 10.1093/biolre/ioae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/22/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
The germ cell-less gene is crucial for gonad development in various organisms. Early interventions in its expression suggested a regulatory role at the mitotic stages of spermatogenesis, and its early knockout resulted in complete sterility in Drosophila. Genomic and transcriptomic data available for the catadromous giant prawn Macrobrachium rosenbergii enabled the identification of a germ cell-less homolog for this species, which we termed MroGCL (mRNA accession number OQ533056). An open reading frame containing 494 amino acids and a typical evolutionarily conserved BTB/POZ domain suggests possible protein-protein interaction functions in keeping with the Drosophila germ cell-less protein. Genomic mapping of MroGCL showed a full length of 120 896 bases. Analysis of the temporal expression of MroGCL showed constant expression in early prawn embryonic and larval stages, but a significant increase 10 days after metamorphosis when crucial sexual differentiation processes occur in prawns. In adult animals, high expression was detected in the gonads compared to the somatic tissues. RNAi-based knock-down experiments showed that both the silenced and control groups reached advanced spermatogenic stages, but that there was a significant decrease in the yield of spermatozoa in about half of the silenced animals. This finding supports our hypothesis that MroGCL is crucial for mitosis during early stage spermatogenesis. In conclusion, this study contributes to the understanding of crustacean gonad development and provides a stepping stone in the development of environmentally valuable sterile crustacean populations.
Collapse
Affiliation(s)
- Jonathan Molcho
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dana Albagly
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tom Levy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Achva Academic College, Arugot, Israel
| | | | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
5
|
De Rouck S, Mocchetti A, Dermauw W, Van Leeuwen T. SYNCAS: Efficient CRISPR/Cas9 gene-editing in difficult to transform arthropods. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104068. [PMID: 38171463 DOI: 10.1016/j.ibmb.2023.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The genome editing technique CRISPR/Cas9 has led to major advancements in many research fields and this state-of-the-art tool has proven its use in genetic studies for various arthropods. However, most transformation protocols rely on microinjection of CRISPR/Cas9 components into embryos, a method which is challenging for many species. Alternatively, injections can be performed on adult females, but transformation efficiencies can be very low as was shown for the two-spotted spider mite, Tetranychus urticae, a minute but important chelicerate pest on many crops. In this study, we explored different CRISPR/Cas9 formulations to optimize a maternal injection protocol for T. urticae. We observed a strong synergy between branched amphipathic peptide capsules and saponins, resulting in a significant increase of CRISPR/Cas9 knock-out efficiency, exceeding 20%. This CRISPR/Cas9 formulation, termed SYNCAS, was used to knock-out different T. urticae genes - phytoene desaturase, CYP384A1 and Antennapedia - but also allowed to develop a co-CRISPR strategy and facilitated the generation of T. urticae knock-in mutants. In addition, SYNCAS was successfully applied to knock-out white and white-like genes in the western flower thrips, Frankliniella occidentalis. The SYNCAS method allows routine genome editing in these species and can be a game changer for genetic research in other hard to transform arthropods.
Collapse
Affiliation(s)
- Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Antonio Mocchetti
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| |
Collapse
|
6
|
Miao M, Li S, Yuan J, Liu P, Fang X, Zhang C, Zhang X, Li F. CRISPR/Cas9-mediated gene mutation of EcIAG leads to sex reversal in the male ridgetail white prawn Exopalaemon carinicauda. Front Endocrinol (Lausanne) 2023; 14:1266641. [PMID: 38075036 PMCID: PMC10703455 DOI: 10.3389/fendo.2023.1266641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
In the culture of crustaceans, most species show sexual dimorphism. Monosex culture is an effective approach to achieve high yield and economic value, especially for decapods of high value. Previous studies have developed some sex control strategies such as manual segregation, manipulation of male androgenic gland and knockdown of the male sexual differentiation switch gene encoding insulin-like androgenic gland hormone (IAG) in decapods. However, these methods could not generate hereditable changes. Genetic manipulation to achieve sex reversal individuals is absent up to now. In the present study, the gene encoding IAG (EcIAG) was identified in the ridgetail white prawn Exopalaemon carinicauda. Sequence analysis showed that EcIAG encoded conserved amino acid structure like IAGs in other decapod species. CRISPR/Cas9-mediated genome editing technology was used to knock out EcIAG. Two sgRNAs targeting the second exon of EcIAG were designed and microinjected into the prawn zygotes or the embryos at the first cleavage with commercial Cas9 protein. EcIAG in three genetic males was knocked out in both chromosome sets, which successfully generated sex reversal and phenotypic female characters. The results suggest that CRISPR/Cas9-mediated genome editing technology is an effective way to develop sex manipulation technology and contribute to monosex aquaculture in crustaceans.
Collapse
Affiliation(s)
- Miao Miao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Peipei Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaochen Fang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengsong Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
7
|
Yano N, Fedulov AV. Targeted DNA Demethylation: Vectors, Effectors and Perspectives. Biomedicines 2023; 11:biomedicines11051334. [PMID: 37239005 DOI: 10.3390/biomedicines11051334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Aberrant DNA hypermethylation at regulatory cis-elements of particular genes is seen in a plethora of pathological conditions including cardiovascular, neurological, immunological, gastrointestinal and renal diseases, as well as in cancer, diabetes and others. Thus, approaches for experimental and therapeutic DNA demethylation have a great potential to demonstrate mechanistic importance, and even causality of epigenetic alterations, and may open novel avenues to epigenetic cures. However, existing methods based on DNA methyltransferase inhibitors that elicit genome-wide demethylation are not suitable for treatment of diseases with specific epimutations and provide a limited experimental value. Therefore, gene-specific epigenetic editing is a critical approach for epigenetic re-activation of silenced genes. Site-specific demethylation can be achieved by utilizing sequence-dependent DNA-binding molecules such as zinc finger protein array (ZFA), transcription activator-like effector (TALE) and clustered regularly interspaced short palindromic repeat-associated dead Cas9 (CRISPR/dCas9). Synthetic proteins, where these DNA-binding domains are fused with the DNA demethylases such as ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG) enzymes, successfully induced or enhanced transcriptional responsiveness at targeted loci. However, a number of challenges, including the dependence on transgenesis for delivery of the fusion constructs, remain issues to be solved. In this review, we detail current and potential approaches to gene-specific DNA demethylation as a novel epigenetic editing-based therapeutic strategy.
Collapse
Affiliation(s)
- Naohiro Yano
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Alexey V Fedulov
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
8
|
DNA double-strand break repair machinery in Penaeid crustaceans: A focus on the Non-Homologous End-Joining pathway. Comp Biochem Physiol B Biochem Mol Biol 2023; 264:110803. [DOI: 10.1016/j.cbpb.2022.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022]
|
9
|
Qiao H, Jiang S, Fu H, Xiong Y, Zhang W, Xu L, Cheng D, Wang J. CRISPR/Cas9 establishment-mediated targeted mutagenesis in Macrobrachium nipponense. Front Physiol 2023; 14:1141359. [PMID: 37035655 PMCID: PMC10079998 DOI: 10.3389/fphys.2023.1141359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: CRISPR/Cas9 is a gene-editing technology which could specifically cleave dsDNA and induce target gene mutation. CRISPR/Cas9 has been widely used in gene functional studies in many fields, such as medicine, biology, and agriculture due to its simple design, low cost, and high efficiency. Although it has been well developed in model fish and freshwater fish for gene function analysis, it is still novel in the studies dealing with economic crustacean species. Methods: In this study, we established a CRISPR/Cas9 system based on microinjection for M. nipponense, an important economic crustacean aquaculture species. The vitellogenin (Vg) gene and the eyeless (Ey) gene were selected as the targeted genes for mutation. Two sgRNAs were designed for Mn-Vg and Mn-Ey gene editing, respectively. Results and Discussion: For sg-Vg-1, the gastrula survival ratio was 8.69%, and the final hatching ratio was 4.83%. The blastula mutant ratio was 10%, and the hatching individual mutant ratio was 30%. For sg-Vg-2, the gastrula survival ratio was 5.85%, and the final hatching ratio was 3.89%. The blastula mutant ratio was 16.67%, and no mutant sequences were detected in hatching individuals. For sg-Ey-1, the gastrula survival ratio was 6.25%, and the final hatching ratio was 2.34%. The blastula mutant ratio was 10.00%, and the hatching individual mutant ratio was 66.67%. For sg-Ey-2, the gastrula survival ratio was 6.00%, and the final hatching ratio was 2.67%. No mutant sequence was detected in both blastula stage and hatching individuals. There were no significant morphological changes observed in the Mn-Vg group. Two deformed types were detected in sg-Ey-1-injected embryos. An evident developmental delay of the compound eye was detected in Ey-sg1-H1 in the zoea stage. The compound eyes of the Ey-sg1-H2 embryo could not form well-defined spheres, and the whole compound eye appeared to diffuse at the end of the late zoea stage. The establishment of a gene-editing platform based on CRISPR/Cas9 will not only provide an efficient and convenient method for gene function analysis but also provide a powerful tool for molecular-assisted breeding of Macrobrachium nipponense.
Collapse
Affiliation(s)
- Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Hongtuo Fu, ; Sufei Jiang,
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Hongtuo Fu, ; Sufei Jiang,
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Lei Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Dan Cheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jisheng Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|