1
|
Li Q, Gao L, Liu L, Wang L, Hu L, Wang L, Song L. Marine thermal fluctuation induced gluconeogenesis by the transcriptional regulation of CgCREBL2 in Pacific oysters. MARINE POLLUTION BULLETIN 2024; 207:116906. [PMID: 39217871 DOI: 10.1016/j.marpolbul.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Marine thermal fluctuation profoundly influences energy metabolism, physiology, and survival of marine life. In the present study, short-term and long-term high-temperature stresses were found to affect gluconeogenesis by inhibiting PEPCK activity in the Pacific oyster (Crassostrea gigas), which is a globally distributed species that encounters significant marine thermal fluctuations in intertidal zones worldwide. CgCREBL2, a key molecule in the regulation of gluconeogenesis, plays a critical role in the transcriptional regulation of PEPCK in gluconeogenesis against high-temperature stress. CgCREBL2 was able to increase the transcription of CgPEPCK by either binding the promoter of CgPEPCK gene or activating CgPGC-1α and CgHNF-4α after short-term (6 h) high-temperature stress, while only by binding CgPEPCK after long-term (60 h) high-temperature stress. These findings will further our understanding of the effect of marine thermal fluctuation on energy metabolism on marine organisms.
Collapse
Affiliation(s)
- Qingsong Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Lu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Ling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Li Hu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
2
|
Abbas ASA, Collins M, Ellis R, Spicer JI, Truebano M. Heat hardening improves thermal tolerance in abalone, without the trade-offs associated with chronic heat exposure. J Therm Biol 2024; 124:103963. [PMID: 39216191 DOI: 10.1016/j.jtherbio.2024.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Marine animals are challenged by chronically raised temperatures alongside an increased frequency of discrete, severe warming events. Exposure to repeated heat shocks could result in heat hardening, where sub-lethal exposure to thermal stress temporarily enhances thermotolerance, and may be an important mechanism by which marine species will cope with future thermal challenges. However, we have relatively little understanding of the effects of heat hardening in comparison to chronic exposure to elevated temperatures. Therefore, we compared the effects of heat hardening from repeated exposure to acute heat shocks and chronic exposure to elevated temperatures on thermal tolerance in the European abalone, Haliotis tuberculata. Adult abalones were exposed to either control temperature (15 °C), chronic warming (20 °C) or a regime of two events of repeated acute heat shock cycles (23-25 °C) during six months, and their thermal tolerance and performance, based upon cardiac activity, compared using a dynamic ramping assay. The cost associated with each treatment was also estimated via measurements of condition index (CI). Abalone exposed to both temperature treatments had higher upper thermal limits than the control, but heat-hardened individuals had significantly higher CI values, indicating an enhancement in condition status. Differences in the shape of the thermal performance curve suggest different mechanisms may be at play under different temperature exposure treatments. We conclude that heat hardening can boost thermal tolerance in this species, without performance trade-offs associated with chronic warming.
Collapse
Affiliation(s)
- Ahmed S A Abbas
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Drake Circus, PL4 8AA, UK; National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Drake Circus, PL4 8AA, UK
| | - Robert Ellis
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - John I Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Drake Circus, PL4 8AA, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Drake Circus, PL4 8AA, UK
| |
Collapse
|
3
|
Smith A, Erber J, Watson A, Johnson C, Gato WE, George SB. The Physiological and Biochemical Response of Ribbed Mussels to Rising Temperatures: Benefits of Salt Marsh Cordgrass. Integr Org Biol 2024; 6:obae031. [PMID: 39282253 PMCID: PMC11398905 DOI: 10.1093/iob/obae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Salt marsh ecosystems are heavily reliant on ribbed mussel (Geukensia demissa) populations to aid in rapid recovery from droughts. The focus of this study was thus to document the effects of rising temperatures on ribbed mussel populations in a Georgia salt marsh. Seven lab and eight field experiments were used to assess the effects of current air temperatures on mussels at two high marsh (HM) sites with short and sparse cordgrass and one mid marsh (MM) site with tall and dense cordgrass. Field results in 2018 and 2019 indicate that ribbed mussels were experiencing extremely high temperatures for prolonged periods of time at the landlocked high marsh (LHM) site. In 2018, the highest temperature (54°C) and longest high temperature events, HTEs (58 days), that is, consecutive days with temperatures ≥40°C, were recorded at this site. When laboratory temperatures were increased from 20 to 36°C, mean heart rates increased by an average of 19 bpm for mussels from both high and MM sites respectively. When field temperatures rose from 20°C in April to 40°C in September 2019, mean heart rates increased by an average of 10 bpm for HM mussels and by 26.3 bpm for MM mussels. Under identical laboratory and field conditions, mean heart rates for mussels from the LHM site with the highest temperatures, increased by <1 bpm and 3.7 bpm respectively. Evidence of the potential role of shade on mussel aggregates was provided by examining whether mussels from the edge of mussel aggregates with little to no cordgrass for shade were more stressed than those living at the center of mussel aggregates. In the absence of shade, mean body temperatures for mussels at the edge of mussel aggregates were up to 8°C higher than for those living in the center underneath a dense tuft of cordgrass. Despite high body temperatures, mean heart rates and Hsp70 gene expression were lower for mussels living at the edges. This agrees with the strategy that during prolong exposure to high temperatures, mussels may reduce their heart rate to conserve energy and enhance survival. Alternatively, heat-stressed mussels at the edges of aggregates may not have the resources to express high levels of Hsp70. Increase in the frequency, intensity, and duration of HTEs may stress the physiological and biochemical function of mussel populations to the limit, dictate mussel aggregate size, and threaten the functionality of SE salt marshes.
Collapse
Affiliation(s)
- A Smith
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| | - J Erber
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, USA
| | - A Watson
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| | - C Johnson
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| | - W E Gato
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, USA
| | - S B George
- B iology Department, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
4
|
Brown S, Rivard GR, Gibson G, Currie S. Warming, stochastic diel thermal fluctuations affect physiological performance and gill plasticity in an amphibious mangrove fish. J Exp Biol 2024; 227:jeb246726. [PMID: 38904077 DOI: 10.1242/jeb.246726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Natural temperature variation in many marine ecosystems is stochastic and unpredictable, and climate change models indicate that this thermal irregularity is likely to increase. Temperature acclimation may be more challenging when conditions are highly variable and stochastic, and there is a need for empirical physiological data in these thermal environments. Using the hermaphroditic, amphibious mangrove rivulus (Kryptolebias marmoratus), we hypothesized that compared with regular, warming diel thermal fluctuations, stochastic warm fluctuations would negatively affect physiological performance. To test this, we acclimated fish to: (1) non-stochastic and (2) stochastic thermal fluctuations with a similar thermal load (27-35°C), and (3) a stable/consistent control temperature at the low end of the cycle (27°C). We determined that fecundity was reduced in both cycles, with reproduction ceasing in stochastic thermal environments. Fish acclimated to non-stochastic thermal cycles had growth rates lower than those of control fish. Exposure to warm, fluctuating cycles did not affect emersion temperature, and only regular diel cycles modestly increased critical thermal tolerance. We predicted that warm diel cycling temperatures would increase gill surface area. Notably, fish acclimated to either thermal cycle had a reduced gill surface area and increased intralamellar cell mass when compared with control fish. This decreased gill surface area with warming contrasts with what is observed for exclusively aquatic fish and suggests a preparatory gill response for emersion in these amphibious fish. Collectively, our data reveal the importance of considering stochastic thermal variability when studying the effects of temperature on fishes.
Collapse
Affiliation(s)
- Sarah Brown
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| | - Gabrielle R Rivard
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
- Department of Biological Sciences, University of New Brunswick Saint John, New Brunswick, E2L 4L5, Canada
| | - Glenys Gibson
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| | - Suzanne Currie
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| |
Collapse
|
5
|
Wang S, Ma L, Chen L, Sokolova IM, Huang W, Li D, Hu M, Khan FU, Shang Y, Wang Y. The combined effects of phenanthrene and micro-/nanoplastics mixtures on the cellular stress responses of the thick-shell mussel Mytilus coruscus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122999. [PMID: 37995954 DOI: 10.1016/j.envpol.2023.122999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Pollution with complex mixtures of contaminants including micro- and nano-plastics (MNPs) and organic pollutants like polycyclic aromatic hydrocarbons (PAH) poses a major threat to coastal marine ecosystems. Toxic mechanisms of contaminant mixtures are not well understood in marine organisms. We studied the effects of single and combined exposures to polycyclic aromatic hydrocarbon phenanthrene (Phe) and MNPs mixture with sizes of 70 nm, 5 μm and 100 μm on the immune health and oxidative stress parameters in the thick-shell mussel Mytilus coruscus. Immune cells (hemocytes) were more sensitive to the pollutant-induced oxidative stress than the gills. In hemocytes of co-exposed mussels, elevated mortality, lower lysosomal content, high production of reactive oxygen species (ROS) and decrease mitochondrial were found. Disparate responses of antioxidant enzymes in the hemolymph (e.g. increased superoxide dismutase (SOD) activity without a corresponding increase in catalase (CAT) in Phe exposures and an increase in CAT without a change in SOD in MNPs exposures) suggests misbalance of the antioxidant defense in the pollutant-exposed mussels. Gill lacked pronounced oxidative stress response showing a decline in ROS and antioxidant levels. Tissue-specific single and combined effects of Phe and MNPs suggest variation in bioavailability and/or different sensitivity to these pollutants in the studied tissues. Notably, the combined effects of MNPs and Phe were additive or antagonistic, showing that MNPs do not enhance and occasionally mitigate the toxic effects of Phe on the hemocytes and the gills of the mussels. Overall, our study sheds light on the impact of long-term exposure to MNPs and Phe mixtures on mussels, showing high sensitivity of the immune system and modulation of the Phe toxicity by MNPs co-exposure. These findings that may have implications for understanding the impacts of combined PAH and MNPs pollution on the health of mussel populations from polluted coastal habitats.
Collapse
Affiliation(s)
- Shixiu Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Lukuo Ma
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Turko AJ, Firth BL, Craig PM, Eliason EJ, Raby GD, Borowiec BG. Physiological differences between wild and captive animals: a century-old dilemma. J Exp Biol 2023; 226:jeb246037. [PMID: 38031957 DOI: 10.1242/jeb.246037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Laboratory-based research dominates the fields of comparative physiology and biomechanics. The power of lab work has long been recognized by experimental biologists. For example, in 1932, Georgy Gause published an influential paper in Journal of Experimental Biology describing a series of clever lab experiments that provided the first empirical test of competitive exclusion theory, laying the foundation for a field that remains active today. At the time, Gause wrestled with the dilemma of conducting experiments in the lab or the field, ultimately deciding that progress could be best achieved by taking advantage of the high level of control offered by lab experiments. However, physiological experiments often yield different, and even contradictory, results when conducted in lab versus field settings. This is especially concerning in the Anthropocene, as standard laboratory techniques are increasingly relied upon to predict how wild animals will respond to environmental disturbances to inform decisions in conservation and management. In this Commentary, we discuss several hypothesized mechanisms that could explain disparities between experimental biology in the lab and in the field. We propose strategies for understanding why these differences occur and how we can use these results to improve our understanding of the physiology of wild animals. Nearly a century beyond Gause's work, we still know remarkably little about what makes captive animals different from wild ones. Discovering these mechanisms should be an important goal for experimental biologists in the future.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Goleta, CA 93117, USA
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Brittney G Borowiec
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| |
Collapse
|
7
|
Li J, Wen J, Hu R, Pei S, Li T, Shan B, Huang H, Zhu C. Transcriptome Responses to Different Environments in Intertidal Zones in the Peanut Worm Sipunculus nudus. BIOLOGY 2023; 12:1182. [PMID: 37759582 PMCID: PMC10525638 DOI: 10.3390/biology12091182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023]
Abstract
The peanut worm (Sipunculus nudus) is an important intertidal species worldwide. Species living in the same aquaculture area might suffer different environmental impacts. To increase knowledge of the molecular mechanisms underlying the response to environmental fluctuations, we performed a transcriptome analysis of S. nudus from different intertidal zones using a combination of the SMRT platform and the Illumina sequencing platform. (1) A total of 105,259 unigenes were assembled, and 23,063 unigenes were perfectly annotated. The results of the PacBio Iso-Seq and IIIumina RNA-Seq enriched the genetic database of S. nudus. (2) A total of 830 DEGs were detected in S. nudus from the different groups. In particular, 33 DEGs had differential expression in the top nine KEGG pathways related to pathogens, protein synthesis, and cellular immune response and signaling. The results indicate that S. nudus from different zones experience different environmental stresses. (3) Several DEGs (HSPA1, NFKBIA, eEF1A, etc.) in pathways related to pathogens (influenza A, legionellosis, measles, and toxoplasmosis) had higher expression in groups M and L. HSPA1 was clearly enriched in most of the pathways, followed by NFKBIA. The results show that the peanut worms from the M and L tidal flats might have suffered more severe environmental conditions. (4) Some DEGs (MKP, MRAS, and HSPB1) were upregulated in peanut worms from the H tidal flat, and these DEGs were mainly involved in the MAPK signaling pathway. These results indicate that the MAPK pathway may play a vital role in the immune response of the peanut worm to the effects of different intertidal flats. This study provides a valuable starting point for further studies to elucidate the molecular basis of the response to different environmental stresses in S. nudus.
Collapse
Affiliation(s)
- Junwei Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Jiufu Wen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Ruiping Hu
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou 510316, China
| | - Surui Pei
- Corregene Biotechnology Co., Ltd., Beijing 102600, China;
| | - Ting Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Binbin Shan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Honghui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Changbo Zhu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
8
|
Azzolini JL, Roderick TB, DeNardo DF. Dehydrated snakes reduce postprandial thermophily. J Exp Biol 2023; 226:jeb245925. [PMID: 37455645 DOI: 10.1242/jeb.245925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Transient thermophily in ectothermic animals is a common response during substantial physiological events. For example, ectotherms often elevate body temperature after ingesting a meal. In particular, the increase in metabolism during the postprandial response of pythons - known as specific dynamic action - is supported by a concurrent increase in preferred temperature. The objective of this study was to determine whether hydration state influences digestion-related behavioral thermophily. Sixteen (8 male and 8 female) Children's pythons (Antaresia childreni) with surgically implanted temperature data loggers were housed individually and provided with a thermal gradient of 25-45°C. Body temperature was recorded hourly beginning 6 days prior to feeding and for 18 days post-feeding, thus covering pre-feeding, postprandial and post-absorptive stages. Each snake underwent this 24 day trial twice, once when hydrated and once when dehydrated. Our results revealed a significant interaction between temperature preference, digestive stage and hydration state. Under both hydrated and dehydrated conditions, snakes similarly increased their body temperature shortly after consuming a meal, but during the later days of the postprandial stage, snakes selected significantly lower (∼1.5°C) body temperature when they were dehydrated compared with when they were hydrated. Our results demonstrate a significant effect of hydration state on postprandial thermophily, but the impact of this dehydration-induced temperature reduction on digestive physiology (e.g. passage time, energy assimilation) is unknown and warrants further study.
Collapse
Affiliation(s)
- Jill L Azzolini
- School of Life Sciences, Arizona State University, Tempe, AZ 85281-4501, USA
| | - Travis B Roderick
- School of Life Sciences, Arizona State University, Tempe, AZ 85281-4501, USA
| | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, AZ 85281-4501, USA
| |
Collapse
|
9
|
Knight K. Unpredictability is key for mussels' seashore resilience. J Exp Biol 2022. [DOI: 10.1242/jeb.244718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|