1
|
Leonard EM, Porteus CS, Brink D, Milsom WK. Fish gill chemosensing: knowledge gaps and inconsistencies. J Comp Physiol B 2024; 194:1-33. [PMID: 38758303 DOI: 10.1007/s00360-024-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| | - Deidre Brink
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Kron NS, Young BD, Drown MK, McDonald MD. Long-read de novo genome assembly of Gulf toadfish (Opsanus beta). BMC Genomics 2024; 25:871. [PMID: 39289604 PMCID: PMC11409776 DOI: 10.1186/s12864-024-10747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The family Batrachoididae are a group of ecologically important teleost fishes with unique life histories, behavior, and physiology that has made them popular model organisms. Batrachoididae remain understudied in the realm of genomics, with only four reference genome assemblies available for the family, with three being highly fragmented and not up to current assembly standards. Among these is the Gulf toadfish, Opsanus beta, a model organism for serotonin physiology which has recently been bred in captivity. RESULTS Here we present a new, de novo genome and transcriptome assemblies for the Gulf toadfish using PacBio long read technology. The genome size of the final assembly is 2.1 gigabases, which is among the largest teleost genomes. This new assembly improves significantly upon the currently available reference for Opsanus beta with a final scaffold count of 62, of which 23 are chromosome scale, an N50 of 98,402,768, and a BUSCO completeness score of 97.3%. Annotation with ab initio and transcriptome-based methods generated 41,076 gene models. The genome is highly repetitive, with ~ 70% of the genome composed of simple repeats and transposable elements. Satellite DNA analysis identified potential telomeric and centromeric regions. CONCLUSIONS This improved assembly represents a valuable resource for future research using this important model organism and to teleost genomics more broadly.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Benjamin D Young
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80302, USA
| | - Melissa K Drown
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
3
|
Witkowska A, Jaromirska J, Gabryelska A, Sochal M. Obstructive Sleep Apnea and Serotoninergic Signalling Pathway: Pathomechanism and Therapeutic Potential. Int J Mol Sci 2024; 25:9427. [PMID: 39273373 PMCID: PMC11395478 DOI: 10.3390/ijms25179427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Obstructive Sleep Apnea (OSA) is a disorder characterized by repeated upper airway collapse during sleep, leading to apneas and/or hypopneas, with associated symptoms like intermittent hypoxia and sleep fragmentation. One of the agents contributing to OSA occurrence and development seems to be serotonin (5-HT). Currently, the research focuses on establishing and interlinking OSA pathogenesis and the severity of the disease on the molecular neurotransmitter omnipresent in the human body-serotonin, its pathway, products, receptors, drugs affecting the levels of serotonin, or genetic predisposition. The 5-HT system is associated with numerous physiological processes such as digestion, circulation, sleep, respiration, and muscle tone-all of which are considered factors promoting and influencing the course of OSA because of correlations with comorbid conditions. Comorbidities include obesity, physiological and behavioral disorders as well as cardiovascular diseases. Additionally, both serotonin imbalance and OSA are connected with psychiatric comorbidities, such as depression, anxiety, or cognitive dysfunction. Pharmacological agents that target 5-HT receptors have shown varying degrees of efficacy in reducing the Apnea-Hypopnea Index and improving OSA symptoms. The potential role of the 5-HT signaling pathway in modulating OSA provides a promising avenue for new therapeutic interventions that could accompany the primary treatment of OSA-continuous positive airway pressure. Thus, this review aims to elucidate the complex role of 5-HT and its regulatory mechanisms in OSA pathophysiology, evaluating its potential as a therapeutic target. We also summarize the relationship between 5-HT signaling and various physiological functions, as well as its correlations with comorbid conditions.
Collapse
Affiliation(s)
- Alicja Witkowska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Julia Jaromirska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
4
|
Duh OA, McDonald MD. Gulf toadfish (Opsanus beta) gill neuroepithelial cells in response to hypoxia exposure. J Comp Physiol B 2024; 194:167-177. [PMID: 38622281 DOI: 10.1007/s00360-024-01547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
Neuroepithelial cells (NECs) within the fish gill contain the monoamine neurochemical serotonin (5-HT), sense changes in the partial pressure of oxygen (PO2) in the surrounding water and blood, and initiate the cardiovascular and ventilatory responses to hypoxia. The distribution of neuroepithelial cells (NECs) within the gill is known for some fish species but not for the Gulf toadfish, Opsanus beta, a fish that has always been considered hypoxia tolerant. Furthermore, whether NEC size, number, or distribution changes after chronic exposure to hypoxia, has never been tested. We hypothesize that toadfish NECs will respond to hypoxia with an increase in NEC size, number, and a change in distribution. Juvenile toadfish (N = 24) were exposed to either normoxia (21.4 ± 0.0 kPa), mild hypoxia (10.2 ± 0.3 kPa), or severe hypoxia (3.1 ± 0.2 kPa) for 7 days and NEC size, number, and distribution for each O2 regime were measured. Under normoxic conditions, juvenile toadfish have similar NEC size, number, and distribution as other fish species with NECs along their filaments but not throughout the lamellae. The distribution of NECs did not change with hypoxia exposure. Mild hypoxia exposure had no effect on NEC size or number, but fish exposed to severe hypoxia had a higher NEC density (# per mm filament) compared to mild hypoxia-exposed fish. Fish exposed to severe hypoxia also had longer gill filament lengths that could not be explained by body weight. These results point to signs of phenotypic plasticity in these juvenile, lab-bred fish with no previous exposure to hypoxia and a strategy to deal with hypoxia exposure that differs in toadfish compared to other fish.
Collapse
Affiliation(s)
- Orianna A Duh
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149-1098, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149-1098, USA.
| |
Collapse
|
5
|
Wieckiewicz M, Martynowicz H, Lavigne G, Lobbezoo F, Kato T, Winocur E, Wezgowiec J, Danel D, Wojakowska A, Mazur G, Smardz J. An exploratory study on the association between serotonin and sleep breathing disorders. Sci Rep 2023; 13:11800. [PMID: 37479853 PMCID: PMC10362063 DOI: 10.1038/s41598-023-38842-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023] Open
Abstract
This exploratory observational study aimed to evaluate whether the blood levels of serotonin and enzymes involved in serotonin synthesis are associated with sleep breathing parameters. A total of 105 patients were included in this study, who were subjected to single-night polysomnography with simultaneous audio-video recordings. Peripheral blood samples were collected to estimate the serum levels of serotonin, tryptophan hydroxylase 1 (TPH1), and aromatic l-amino acid decarboxylase (AADC). Results showed a negative correlation between blood serotonin levels, and oxygen desaturation index (ODI) (p = 0.027), central apnea (p = 0.044) and obstructive apnea (OA) (p = 0.032) scores. Blood TPH1 levels were negatively correlated with average (p = 0.003) and minimal saturation (p = 0.035) and positively correlated with apnea-hypopnea index (p = 0.010), OA (p = 0.049), and hypopnea index (p = 0.007) scores. A tendency to sleep-disordered breathing seemed to co-occur with lower blood serotonin and higher TPH1 levels.Clinical Trial Registration : www.ClinicalTrials.gov , identifier NCT04214561.
Collapse
Affiliation(s)
- Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Helena Martynowicz
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Gilles Lavigne
- Faculty of Dental Medicine, Universite de Montreal, CIUSSS Nord Ile de Montreal and CHUM, Montreal, Canada
| | - Frank Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Efraim Winocur
- Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joanna Wezgowiec
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| | - Dariusz Danel
- Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Wojakowska
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Mazur
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Smardz
- Department of Experimental Dentistry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
6
|
Knight K. Deoxygenated toadfish turn up gill serotonin degradation to catch breath. J Exp Biol 2022. [DOI: 10.1242/jeb.244636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|