1
|
Ben-Trad L, Matei CI, Sava MM, Filali S, Duclos ME, Berthier Y, Guichardant M, Bernoud-Hubac N, Maniti O, Landoulsi A, Blanchin MG, Miossec P, Granjon T, Trunfio-Sfarghiu AM. Synovial Extracellular Vesicles: Structure and Role in Synovial Fluid Tribological Performances. Int J Mol Sci 2022; 23:ijms231911998. [PMID: 36233300 PMCID: PMC9570016 DOI: 10.3390/ijms231911998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
The quality of the lubricant between cartilaginous joint surfaces impacts the joint’s mechanistic properties. In this study, we define the biochemical, ultrastructural, and tribological signatures of synovial fluids (SF) from patients with degenerative (osteoarthritis-OA) or inflammatory (rheumatoid arthritis-RA) joint pathologies in comparison with SF from healthy subjects. Phospholipid (PL) concentration in SF increased in pathological contexts, but the proportion PL relative to the overall lipids decreased. Subtle changes in PL chain composition were attributed to the inflammatory state. Transmission electron microscopy showed the occurrence of large multilamellar synovial extracellular vesicles (EV) filled with glycoprotein gel in healthy subjects. Synovial extracellular vesicle structure was altered in SF from OA and RA patients. RA samples systematically showed lower viscosity than healthy samples under a hydrodynamic lubricating regimen whereas OA samples showed higher viscosity. In turn, under a boundary regimen, cartilage surfaces in both pathological situations showed high wear and friction coefficients. Thus, we found a difference in the biochemical, tribological, and ultrastructural properties of synovial fluid in healthy people and patients with osteoarthritis and arthritis of the joints, and that large, multilamellar vesicles are essential for good boundary lubrication by ensuring a ball-bearing effect and limiting the destruction of lipid layers at the cartilage surface.
Collapse
Affiliation(s)
- Layth Ben-Trad
- Laboratory of Contact and Structural Mechanics, University of Lyon, CNRS, INSA Lyon, UMR5259, Villeurbanne, 69100 Lyon, France
- Institute de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, University of Lyon, Université Lyon 1, CNRS, 69622 Lyon, France
- Faculty of Sciences of Bizerte, University of Carthage, Laboratory of Risques Liés aux Stress Environnementaux: Lutte et Prévention, Zarzouna 1054, Tunisia
- Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
| | - Constantin Ionut Matei
- Laboratory of Contact and Structural Mechanics, University of Lyon, CNRS, INSA Lyon, UMR5259, Villeurbanne, 69100 Lyon, France
- Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
- Institute Lumiere Mat, University of Lyon, CNRS, UCBL, ILM, UMR5506, 69622 Villeurbanne, France
| | - Mirela Maria Sava
- Laboratory of Contact and Structural Mechanics, University of Lyon, CNRS, INSA Lyon, UMR5259, Villeurbanne, 69100 Lyon, France
- Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
| | - Samira Filali
- Unit of Immunogenetics & Inflammation EA-4130 & Department of Clinical Immunology and Rheumatology, University of Lyon, Hôpital Edouard Herriot, 69437 Lyon, France
| | - Marie-Eve Duclos
- Charles River Laboratories, 13, Allée de Nudlingen, 27950 Saint-Marcel, France
| | - Yves Berthier
- Laboratory of Contact and Structural Mechanics, University of Lyon, CNRS, INSA Lyon, UMR5259, Villeurbanne, 69100 Lyon, France
- Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
| | - Michel Guichardant
- Laboratory of Contact and Structural Mechanics, University of Lyon, CNRS, INSA Lyon, UMR5259, Villeurbanne, 69100 Lyon, France
- Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
| | - Nathalie Bernoud-Hubac
- Laboratory of Contact and Structural Mechanics, University of Lyon, CNRS, INSA Lyon, UMR5259, Villeurbanne, 69100 Lyon, France
- Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
| | - Ofelia Maniti
- Institute de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, University of Lyon, Université Lyon 1, CNRS, 69622 Lyon, France
- Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
| | - Ahmed Landoulsi
- Faculty of Sciences of Bizerte, University of Carthage, Laboratory of Risques Liés aux Stress Environnementaux: Lutte et Prévention, Zarzouna 1054, Tunisia
| | | | - Pierre Miossec
- Unit of Immunogenetics & Inflammation EA-4130 & Department of Clinical Immunology and Rheumatology, University of Lyon, Hôpital Edouard Herriot, 69437 Lyon, France
- Correspondence: (P.M.); (T.G.); Tel.: +33-472-431-503 (T.G.)
| | - Thierry Granjon
- Institute de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, University of Lyon, Université Lyon 1, CNRS, 69622 Lyon, France
- Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
- Correspondence: (P.M.); (T.G.); Tel.: +33-472-431-503 (T.G.)
| | - Ana-Maria Trunfio-Sfarghiu
- Laboratory of Contact and Structural Mechanics, University of Lyon, CNRS, INSA Lyon, UMR5259, Villeurbanne, 69100 Lyon, France
- Institut Multidisciplinaire de Biochimie des Lipides, 69621 Villeurbanne, France
| |
Collapse
|
3
|
Schuenke MD, Vleeming A, Van Hoof T, Willard FH. A description of the lumbar interfascial triangle and its relation with the lateral raphe: anatomical constituents of load transfer through the lateral margin of the thoracolumbar fascia. J Anat 2012; 221:568-76. [PMID: 22582887 DOI: 10.1111/j.1469-7580.2012.01517.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Movement and stability of the lumbosacral region is contingent on the balance of forces distributed through the myofascial planes associated with the thoracolumbar fascia (TLF). This structure is located at the common intersection of several extremity muscles (e.g. latissimus dorsi and gluteus maximus), as well as hypaxial (e.g. ventral trunk muscles) and epaxial (paraspinal) muscles. The mechanical properties of the fascial constituents establish the parameters guiding the dynamic interaction of muscle groups that stabilize the lumbosacral spine. Understanding the construction of this complex myofascial junction is fundamental to biomechanical analysis and implementation of effective rehabilitation in individuals with low back and pelvic girdle pain. Therefore, the main objectives of this study were to describe the anatomy of the lateral margin of the TLF, and specifically the interface between the fascial sheath surrounding the paraspinal muscles and the aponeurosis of the transversus abdominis (TA) and internal oblique (IO) muscles. The lateral margin of the TLF was exposed via serial reduction dissections from anterior and posterior approaches. Axial sections (cadaveric and magnetic resonance imaging) were examined to characterize the region between the TA and IO aponeurosis and the paraspinal muscles. It is confirmed that the paraspinal muscles are enveloped by a continuous paraspinal retinacular sheath (PRS), formed by the deep lamina of the posterior layer of the TLF. The PRS extends from the spinous process to transverse process, and is distinct from both the superficial lamina of the posterior layer and middle layer of the TLF. As the aponeurosis approaches the lateral border of the PRS, it appears to separate into two distinct laminae, which join the anterior and posterior walls of the PRS. This configuration creates a previously undescribed fat-filled lumbar interfascial triangle situated along the lateral border of the paraspinal muscles from the 12th rib to the iliac crest. This triangle results in the unification of different fascial sheaths along the lateral border of the TLF, creating a ridged-union of dense connective tissue that has been termed the lateral raphe (Spine, 9,1984, 163). This triangle may function in the distribution of laterally mediated tension to balance different viscoelastic moduli, along either the middle or posterior layers of the TLF.
Collapse
Affiliation(s)
- M D Schuenke
- Department of Anatomy, University of New England College of Osteopathic Medicine, Biddeford, ME 04005, USA.
| | | | | | | |
Collapse
|
4
|
McGonagle L, Jones MD, Dowson D, Theobald PS. The bio-tribological properties of anti-adhesive agents commonly used during tendon repair. J Orthop Res 2012; 30:775-80. [PMID: 22012635 DOI: 10.1002/jor.21569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 09/26/2011] [Indexed: 02/04/2023]
Abstract
Frictional resistance to tendon gliding is minimized by surrounding loose areolar tissue. During periods of prolonged immobilization, for example, post-tendon-repair, adhesions can form between these two adjacent tissues, thereby limiting tendon function. Anti-adhesive agents can be applied during surgery to prevent adhesion formation, whilst reportedly providing some reduction in friction during in vitro tendon-bony pulley investigations. This bio-tribological study evaluates whether application of these agents can improve the lubrication between the tendon and surrounding tissue, thus potentially reducing the risk of re-rupturing the tendon at the repair site. The use of bovine synovial fluid (BSF) enabled an approximation of the in vivo lubrication regime, and subsequent comparison of the performance of three synthetic agents (50 mg/ml 5-fluorouracil; 5 mg/ml hyaluronic acid; ADCON-T/N). Coefficient of friction data was recorded and then compared with the Stribeck curve. BSF generated a fluid film that separated the two surfaces, giving rise to optimal lubrication conditions. This efficient regime was also generated following application of each anti-adhesion agent. The use of phosphate-buffered saline solution in generating only a boundary lubrication regime highlighted the effectiveness of the agents in reducing friction. Hyaluronic acid (5 mg/ml) was marginally deemed the most effective anti-adhesive agent at lubricating the tendon. Subsequently, it is concluded that the application of anti-adhesive agents post-surgery has secondary, tribological benefits that serve to reduce friction, and thus potentially the risk of failure, at the tendon repair site.
Collapse
Affiliation(s)
- Lorcan McGonagle
- Trauma Biomechanics Research Group, Institute of Medical Engineering and Medical Physics, Cardiff University, Queen's Building, The Parade, Cardiff, CF24 3AA, UK
| | | | | | | |
Collapse
|
5
|
Persson C, Summers J, Hall RM. The importance of fluid-structure interaction in spinal trauma models. J Neurotrauma 2010; 28:113-25. [PMID: 21047151 DOI: 10.1089/neu.2010.1332] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While recent studies have demonstrated the importance of the initial mechanical insult in the severity of spinal cord injury, there is a lack of information on the detailed cord-column interaction during such events. In vitro models have demonstrated the protective properties of the cerebrospinal fluid, but visualization of the impact is difficult. In this study a computational model was developed in order to clarify the role of the cerebrospinal fluid and provide a more detailed picture of the cord-column interaction. The study was validated against a parallel in vitro study on bovine tissue. Previous assumptions about complete subdural collapse before any cord deformation were found to be incorrect. Both the presence of the dura mater and the cerebrospinal fluid led to a reduction in the longitudinal strains within the cord. The division of the spinal cord into white and grey matter perturbed the bone fragment trajectory only marginally. In conclusion, the cerebrospinal fluid had a significant effect on the deformation pattern of the cord during impact and should be included in future models. The type of material models used for the spinal cord and the dura mater were found to be important to the stress and strain values within the components, but less important to the fragment trajectory.
Collapse
Affiliation(s)
- Cecilia Persson
- School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom.
| | | | | |
Collapse
|
6
|
Thomas JMC, Beevers D, Dowson D, Jones MD, King P, Theobald PS. The Bio-Tribological Characteristics of Synthetic Tissue Grafts. Proc Inst Mech Eng H 2010; 225:141-8. [DOI: 10.1243/09544119jeim796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of synthetic connective tissue grafts became popular in the mid-1980s, particularly for anterior cruciate ligament reconstruction; however, this trend was soon changed given the high failure rate due to abrasive wear. More than 20 years later, a vast range of grafts are available to the orthopaedic surgeon for augmenting connective tissue following rupture or tissue loss. While the biomechanical properties of these synthetic grafts become ever closer to the natural tissue, there have been no reports of their bio-tribological (i.e. bio-friction) characteristics. In this study, the bio-tribological performance of three clinically available synthetic tissue grafts, and natural tendon, was investigated. It was established that the natural tissue exhibits fluid-film lubrication characteristics and hence is highly efficient when sliding against opposing tissues. Conversely, all the synthetic tissues demonstrated boundary or mixed lubrication regimes, resulting in surface—surface contact, which will subsequently cause third body wear. The tribological performance of the synthetic tissue, however, appeared to be dependent on the macroscopic structure. This study indicates that there is a need for synthetic tissue designs to have improved frictional characteristics or to use a scaffold structure that encourages tissue in-growth. Such a development would optimize the bio-tribological properties of the synthetic tissue and thereby maximize longevity.
Collapse
Affiliation(s)
- J M C Thomas
- Department of Trauma and Orthopaedics, The Royal London Hospital, Whitechapel, London, UK
| | - D Beevers
- Xiros, Springfield House, Whitehouse Lane, Leeds, UK
| | - D Dowson
- Trauma Biomechanics Research Group, Institute of Medical Engineering and Medical Physics, Cardiff University, Cardiff, UK
| | - M D Jones
- Trauma Biomechanics Research Group, Institute of Medical Engineering and Medical Physics, Cardiff University, Cardiff, UK
| | - P King
- Trauma Biomechanics Research Group, Institute of Medical Engineering and Medical Physics, Cardiff University, Cardiff, UK
| | - P S Theobald
- Trauma Biomechanics Research Group, Institute of Medical Engineering and Medical Physics, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Abstract
Kager's fat pad is located in Kager's triangle between the Achilles tendon, the superior cortex of the calcaneus, and flexor hallucis longus (FHL) muscle and tendon. Its biomechanical functions are not yet established, but recent studies suggest it performs important biomechanical roles as it is lined by a synovial membrane and its retrocalcaneal protruding wedge can be observed moving into the bursal space during ankle plantarflexion. Such features have prompted hypotheses that the protruding wedge assists in the lubrication of the Achilles tendon subtendinous area, distributes stress at the Achilles enthesis, and removes debris from within the retrocalcaneal bursa. This study examined the influence of FHL activity and Achilles tendon load on the protruding wedge sliding distance, using both dynamic ultrasound imaging and surface electromyogram. Intervolunteer results showed sliding distance was independent of FHL activity. This study has shown the protruding wedge to slide on average 60% further into the retrocalcaneal bursa when comparing the Achilles tendon loaded versus unloaded, consistently reaching the distal extremity. Sliding distance was dependent on a change in the Achilles tendon insertion angle. Our results support a number of hypothesized biomechanical functions of the protruding wedge including: lubrication of the subtendinous region; reduction of pressure change within the Achilles tendon enthesis organ; and removal of debris from within the retrocalcaneal bursa.
Collapse
Affiliation(s)
- Ahmad Ghazzawi
- Institute of Medical Engineering and Medical Physics, School of Engineering, Cardiff University, The Parade, Cardiff, South Glamorgan CF24 3AA, United Kingdom.
| | | | | | | | | |
Collapse
|