1
|
Zimmerman BK, Maas SA, Weiss JA, Ateshian GA. A Finite Element Algorithm for Large Deformation Biphasic Frictional Contact Between Porous-Permeable Hydrated Soft Tissues. J Biomech Eng 2022; 144:1115780. [PMID: 34382640 PMCID: PMC8547016 DOI: 10.1115/1.4052114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 02/03/2023]
Abstract
The frictional response of porous and permeable hydrated biological tissues such as articular cartilage is significantly dependent on interstitial fluid pressurization. To model this response, it is common to represent such tissues as biphasic materials, consisting of a binary mixture of a porous solid matrix and an interstitial fluid. However, no computational algorithms currently exist in either commercial or open-source software that can model frictional contact between such materials. Therefore, this study formulates and implements a finite element algorithm for large deformation biphasic frictional contact in the open-source finite element software FEBio. This algorithm relies on a local form of a biphasic friction model that has been previously validated against experiments, and implements the model into our recently-developed surface-to-surface (STS) contact algorithm. Contact constraints, including those specific to pressurized porous media, are enforced with the penalty method regularized with an active-passive augmented Lagrangian scheme. Numerical difficulties specific to challenging finite deformation biphasic contact problems are overcome with novel smoothing schemes for fluid pressures and Lagrange multipliers. Implementation accuracy is verified against semi-analytical solutions for biphasic frictional contact, with extensive validation performed using canonical cartilage friction experiments from prior literature. Essential details of the formulation are provided in this paper, and the source code of this biphasic frictional contact algorithm is made available to the general public.
Collapse
Affiliation(s)
| | - Steve A. Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Jeffrey A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Gerard A. Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
2
|
Matheson AR, Sheehy EJ, Jay GD, Scott WM, O'Brien FJ, Schmidt TA. The role of synovial fluid constituents in the lubrication of collagen-glycosaminoglycan scaffolds for cartilage repair. J Mech Behav Biomed Mater 2021; 118:104445. [PMID: 33740688 DOI: 10.1016/j.jmbbm.2021.104445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022]
Abstract
Extracellular matrix (ECM)-derived scaffolds have shown promise as tissue-engineered grafts for promoting cartilage repair. However, there has been a lack of focus on fine-tuning the frictional properties of scaffolds for cartilage tissue engineering as well as understanding their interactions with synovial fluid constituents. Proteoglycan-4 (PRG4) and hyaluronan (HA) are macromolecules within synovial fluid that play key roles as boundary mode lubricants during cartilage surface interactions. The overall objective of this study was to characterize the role PRG4 and HA play in the lubricating function of collagen-glycosaminoglycan (GAG) scaffolds for cartilage repair. As a first step towards this goal, we aimed to develop a suitable in vitro friction test to establish the boundary mode lubrication parameters for collagen-GAG scaffolds articulated against glass in a phosphate buffered saline (PBS) bath. Subsequently, we sought to leverage this system to determine the effect of physiological synovial fluid lubricants, PRG4 and HA, on the frictional properties of collagen-GAG scaffolds, with scaffolds hydrated in PBS and bovine synovial fluid (bSF) serving as negative and positive controls, respectively. At all compressive strains examined (ε = 0.1-0.5), fluid depressurization within hydrated collagen-GAG scaffolds was >99% complete at ½ minute. The coefficient of friction was stable at all compressive strains (ranging from a low 0.103 ± 0.010 at ε = 0.3 up to 0.121 ± 0.015 at ε = 0.4) and indicative of boundary-mode conditions. Immunohistochemistry demonstrated that PRG4 from recombinant human (rh) and bovine sources adsorbed to collagen-GAG scaffolds and the coefficient of friction for scaffolds immersed in rhPRG4 (0.067 ± 0.027) and normal bSF (0.056 ± 0.020) solution decreased compared to PBS (0.118 ± 0.21, both p < 0.05, at ε = 0.2). The ability of the adsorbed rhPRG4 to reduce friction on the scaffolds indicates that its incorporation within collagen-GAG biomaterials may enhance their lubricating ability as potential tissue-engineered cartilage replacements. To conclude, this study reports the development of an in vitro friction test capable of characterizing the coefficient of friction of ECM-derived scaffolds tested in a range of synovial fluid lubricants and demonstrates frictional properties as a potential design parameter for implants and materials for soft tissue replacement.
Collapse
Affiliation(s)
- Austyn R Matheson
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Eamon J Sheehy
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, USA
| | - W Michael Scott
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
3
|
Durney KM, Shaeffer CA, Zimmerman BK, Nims RJ, Oungoulian S, Jones BK, Boorman-Padgett JF, Suh JT, Shah RP, Hung CT, Ateshian GA. Immature bovine cartilage wear by fatigue failure and delamination. J Biomech 2020; 107:109852. [PMID: 32517855 DOI: 10.1016/j.jbiomech.2020.109852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
This study investigated wear damage of immature bovine articular cartilage using reciprocal sliding of tibial cartilage strips against glass or cartilage. Experiments were conducted in physiological buffered saline (PBS) or mature bovine synovial fluid (SF). A total of 63 samples were tested, of which 47 exhibited wear damage due to delamination of the cartilage surface initiated in the middle zone, with no evidence of abrasive wear. There was no difference between the friction coefficient of damaged and undamaged samples, showing that delamination wear occurs even when friction remains low under a migrating contact area configuration. No difference was observed in the onset of damage or in the friction coefficient between samples tested in PBS or SF. The onset of damage occurred earlier when testing cartilage against glass versus cartilage against cartilage, supporting the hypothesis that delamination occurs due to fatigue failure of the collagen in the middle zone, since stiffer glass produces higher strains and tensile stresses under comparable loads. The findings of this study are novel because they establish that delamination of the articular surface, starting in the middle zone, may represent a primary mechanism of failure. Based on preliminary data, it is reasonable to hypothesize that delamination wear via subsurface fatigue failure is similarly the primary mechanism of human cartilage wear under normal loading conditions, albeit requiring far more cycles of loading than in immature bovine cartilage.
Collapse
Affiliation(s)
- Krista M Durney
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Courtney A Shaeffer
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Brandon K Zimmerman
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Robert J Nims
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Sevan Oungoulian
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Brian K Jones
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | | | - Jason T Suh
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Roshan P Shah
- Department of Orthopaedic Surgery, Columbia University, New York, NY, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Schütte A, Mack M, Behler H, Ruland M, Weiß C, Schwarz MLR. Tribometer for measuring coefficients of friction of uneven surfaces like articular cartilage. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:034102. [PMID: 32259970 DOI: 10.1063/1.5124006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/15/2020] [Indexed: 06/11/2023]
Abstract
To examine coefficients of friction (COFs) of articular cartilage, it is necessary to use cartilage as a friction partner. Irregularities of surfaces require special tribometers and calculation methods. The aim of this study was to establish a tribometer system for measuring a low COF of cartilage and to develop and validate an algorithm that takes the irregularities into consideration. We used a pin-on-plate tribometer that allows a vertical displacement of the pin to follow the surface of the plate and developed an algorithm that takes these irregularities into account. We were, thus, able to take into consideration a forward and backward movement, an upward and downward movement, and different force ratios. The algorithm was validated using a spherical POM (polyoxymethylene) pin against a stainless steel plate at slope angles up to 24°. First examinations with articular cartilage against articular cartilage samples of a stifle joint of a pig were then performed. The newly developed tribometer worked well when POM against a stainless steel hump was examined. The COF increased for slope angles steeper than ±15°. There was an interaction between the COF and the slope angle, but not for the range within ±15°. Cartilage examinations revealed COFs as published in the literature. The tribometer and the algorithm were suitable for the detection of low COF of irregular surfaces of the plate within a range of ±15°. The COF resulting from the forward and backward movements should be averaged.
Collapse
Affiliation(s)
- Andy Schütte
- Medical Faculty Mannheim, Heidelberg University, Section for Experimental Orthopaedics and Trauma Surgery, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Michael Mack
- Medical Faculty Mannheim, Heidelberg University, Section for Experimental Orthopaedics and Trauma Surgery, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Helmut Behler
- Department Chemical Process Engineering, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany
| | - Michael Ruland
- Department of Mechanical Engineering, Competence Center of Tribology, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany
| | - Christel Weiß
- Department of Medical Statistics, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Markus L R Schwarz
- Medical Faculty Mannheim, Heidelberg University, Section for Experimental Orthopaedics and Trauma Surgery, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
5
|
Bauer C, Göçerler H, Niculescu‐Morzsa E, Jeyakumar V, Stotter C, Tóth I, Klestil T, Franek F, Nehrer S. Effect of osteochondral graft orientation in a biotribological test system. J Orthop Res 2019; 37:583-592. [PMID: 30690777 PMCID: PMC6594111 DOI: 10.1002/jor.24236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 01/11/2019] [Indexed: 02/04/2023]
Abstract
Autologous osteochondral transplantation (AOT) utilizing autografts is a widely used technique for the treatment of small-to-medium cartilage defects occurring in knee and ankle joints. The application of viable cartilage and bone ensures proper integration, early weight bearing, as well as restoration of biomechanical and biotribological properties. However, alignment of the autografts onto the defect site remains a pivotal aspect of reinstating the properties of the joint toward successful autograft integration. This is the first study to perform tests with different orientations of osteochondral grafts in a cartilage-on-cartilage test system. The objective was to estimate if there are differences between aligned and 90°-rotated grafts concerning molecular biological and biomechanical parameters. Tissue viability, assessed by XTT assay indicated lower metabolic activity in tested osteochondral grafts (aligned, p = 0.0148 and 90°-rotated, p = 0.0760) in favor of a higher anabolic gene expression (aligned, p = 0.0030 and 90°-rotated, 0.0027). Tissue structure was evaluated by Safranin O histology and microscopic images of the surface. Aligned and 90°-rotated grafts revealed no apparent differences between proteoglycan content or cracks and fissures on the cartilage surface. Test medium analyzed after tribological tests for their sulfated glycosaminoglycan content revealed no differences (p = 0.3282). During the tests, both the friction coefficient and the relative displacement between the two cartilage surfaces were measured, with no significant difference in both parameters (COF, p = 0.2232 and relative displacement, p = 0.3185). From the methods we deployed, this study can infer that there are no differences between aligned and 90°-rotated osteochondral grafts after tribological tests in the used ex vivo tissue model. © 2019 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res.
Collapse
Affiliation(s)
- Christoph Bauer
- Danube University Krems, Department for Health Sciences, Medicine and ResearchCenter for Regenerative Medicine and OrthopedicsDr.‐Karl‐Dorrek‐Strasse 303500KremsAustria
| | | | - Eugenia Niculescu‐Morzsa
- Danube University Krems, Department for Health Sciences, Medicine and ResearchCenter for Regenerative Medicine and OrthopedicsDr.‐Karl‐Dorrek‐Strasse 303500KremsAustria
| | - Vivek Jeyakumar
- Danube University Krems, Department for Health Sciences, Medicine and ResearchCenter for Regenerative Medicine and OrthopedicsDr.‐Karl‐Dorrek‐Strasse 303500KremsAustria
| | - Christoph Stotter
- Danube University Krems, Department for Health Sciences, Medicine and ResearchCenter for Regenerative Medicine and OrthopedicsDr.‐Karl‐Dorrek‐Strasse 303500KremsAustria,LK Baden‐Mödling‐HainburgDepartment of Orthopedics and TraumatologyBadenAustria
| | | | - Thomas Klestil
- LK Baden‐Mödling‐HainburgDepartment of Orthopedics and TraumatologyBadenAustria,Danube University Krems, Department for Health Sciences, Medicine and ResearchCenter for Health Sciences and MedicineKremsAustria
| | | | - Stefan Nehrer
- Danube University Krems, Department for Health Sciences, Medicine and ResearchCenter for Regenerative Medicine and OrthopedicsDr.‐Karl‐Dorrek‐Strasse 303500KremsAustria
| |
Collapse
|
6
|
Kanca Y, Milner P, Dini D, Amis AA. Tribological evaluation of biomedical polycarbonate urethanes against articular cartilage. J Mech Behav Biomed Mater 2018; 82:394-402. [DOI: 10.1016/j.jmbbm.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 01/17/2023]
|
7
|
Tribological properties of PVA/PVP blend hydrogels against articular cartilage. J Mech Behav Biomed Mater 2018; 78:36-45. [DOI: 10.1016/j.jmbbm.2017.10.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 11/21/2022]
|
8
|
Bowland P, Ingham E, Fisher J, Jennings LM. Simple geometry tribological study of osteochondral graft implantation in the knee. Proc Inst Mech Eng H 2018; 232:249-256. [PMID: 29375001 PMCID: PMC5862326 DOI: 10.1177/0954411917751560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Robust preclinical test methods involving tribological simulations are required to investigate and understand the tribological function of osteochondral repair interventions in natural knee tissues. The aim of this study was to investigate the effects of osteochondral allograft implantation on the local tribology (friction, surface damage, wear and deformation) of the tissues in the natural knee joint using a simple geometry, reciprocating pin-on-plate friction simulator. In addition, the study aimed to assess the ability of osteochondral grafts to restore a low surface damage, deformation and wear articulation when compared to the native state. A method was developed to characterise and quantify surface damage wear and deformation of the opposing cartilage-bone pin surface using a non-contacting optical profiler (Alicona Infinite Focus). Porcine 12 mm diameter cartilage-bone pins were reciprocated against bovine cartilage-bone plates that had 6 mm diameter osteochondral allografts, cartilage defects or stainless steel pins (positive controls) inserted centrally. Increased levels of surface damage with changes in geometry were not associated with significant increases in the coefficient of dynamic friction. Significant damage to the opposing cartilage surface was observed in the positive control groups. Cartilage damage, deformation and wear (as measured by change in geometry) in the xenograft (2.4 mm3) and cartilage defect (0.99 mm3) groups were low and not significantly different (p > 0.05) compared to the negative control in either group. The study demonstrated the potential of osteochondral grafts to restore the congruent articular surface and biphasic tribology of the natural joint. An optical method has been developed to characterise cartilage wear, damage and deformation that can be applied to the tribological assessment of osteochondral grafts in a whole natural knee joint simulation model.
Collapse
Affiliation(s)
| | | | | | - Louise M Jennings
- Louise M Jennings, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
9
|
Quantification of cartilage wear morphologies in unidirectional sliding experiments: Influence of different macromolecular lubricants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.biotri.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Trevino RL, Stoia J, Laurent MP, Pacione CA, Chubinskaya S, Wimmer MA. ESTABLISHING A LIVE CARTILAGE-ON-CARTILAGE INTERFACE FOR TRIBOLOGICAL TESTING. ACTA ACUST UNITED AC 2016; 9:1-11. [PMID: 29242820 DOI: 10.1016/j.biotri.2016.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mechano-biochemical wear encompasses the tribological interplay between biological and mechanical mechanisms responsible for cartilage wear and degradation. The aim of this study was to develop and start validating a novel tribological testing system, which better resembles the natural joint environment through incorporating a live cartilage-on-cartilage articulating interface, joint specific kinematics, and the application of controlled mechanical stimuli for the measurement of biological responses in order to study the mechano-biochemical wear of cartilage. The study entailed two parts. In Part 1, the novel testing rig was used to compare two bearing systems: (a) cartilage articulating against cartilage (CoC) and (b) metal articulating against cartilage (MoC). The clinically relevant MoC, which is also a common tribological interface for evaluating cartilage wear, should produce more wear to agree with clinical observations. In Part II, the novel testing system was used to determine how wear is affected by tissue viability in live and dead CoC articulations. For both parts, bovine cartilage explants were harvested and tribologically tested for three consecutive days. Wear was defined as release of glycosaminoglycans into the media and as evaluation of the tissue structure. For Part I, we found that the live CoC articulation did not cause damage to the cartilage, to the extent of being comparable to the free swelling controls, whereas the MoC articulation caused decreased cell viability, extracellular matrix disruption, and increased wear when compared to CoC, and consistent with clinical data. These results provided confidence that this novel testing system will be adequate to screen new biomaterials for articulation against cartilage, such as in hemiarthroplasty. For Part II, the live and dead cartilage articulation yielded similar wear as determined by the release of proteoglycans and aggrecan fragments, suggesting that keeping the cartilage alive may not be essential for short term wear tests. However, the biosynthesis of glycosaminoglycans was significantly higher due to live CoC articulation than due to the corresponding live free swelling controls, indicating that articulation stimulated cell activity. Moving forward, the cell response to mechanical stimuli and the underlying mechano-biochemical wear mechanisms need to be further studied for a complete picture of tissue degradation.
Collapse
Affiliation(s)
- Robert L Trevino
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL
| | - Jonathan Stoia
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Michel P Laurent
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Carol A Pacione
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Susan Chubinskaya
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL.,Department of Pediatrics, Rush University Medical Center, Chicago, IL
| | - Markus A Wimmer
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL.,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| |
Collapse
|
11
|
Liu A, Jennings LM, Ingham E, Fisher J. Tribology studies of the natural knee using an animal model in a new whole joint natural knee simulator. J Biomech 2015; 48:3004-11. [DOI: 10.1016/j.jbiomech.2015.07.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/15/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
|
12
|
Park JY, Duong CT, Sharma AR, Son KM, Thompson MS, Park S, Chang JD, Nam JS, Park S, Lee SS. Effects of hyaluronic acid and γ-globulin concentrations on the frictional response of human osteoarthritic articular cartilage. PLoS One 2014; 9:e112684. [PMID: 25426992 PMCID: PMC4245191 DOI: 10.1371/journal.pone.0112684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/09/2014] [Indexed: 11/19/2022] Open
Abstract
Synovial fluid plays an important role in lubricating synovial joints. Its main constituents are hyaluronic acid (HA) and γ-globulin, acting as boundary lubricants for articular cartilage. The aim of the study was to demonstrate the concentration-dependent effect of HA and γ-globulin on the boundary-lubricating ability of human osteoarthritis (OA) cartilage. Normal, early and advance stage articular cartilage samples were obtained from human femoral heads and in presence of either HA or γ-globulin, cartilage frictional coefficient (µ) was measured by atomic force microscopy (AFM). In advanced stage OA, the cartilage superficial layer was observed to be completely removed and the damaged cartilage surface showed a higher µ value (∼ 0.409) than the normal cartilage surface (∼ 0.119) in PBS. Adsorbed HA and γ-globulin molecules significantly improved the frictional behavior of advanced OA cartilage, while they were ineffective for normal and early OA cartilage. In advanced-stage OA, the concentration-dependent frictional response of articular cartilage was observed with γ-globulin, but not with HA. Our result suggested that HA and γ-globulin may play a significant role in improving frictional behavior of advanced OA cartilage. During early-stage OA, though HA and γ-globulin had no effect on improving frictional behavior of cartilage, however, they might contribute to disease modifying effects of synovial fluid as observed in clinical settings.
Collapse
Affiliation(s)
- Jae-Yong Park
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
| | - Cong-Truyen Duong
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea
- Mechanical Engineering Department, Industrial University of Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
| | - Kyeong-Min Son
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
| | - Mark S. Thompson
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Sungchan Park
- Department of Urology, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jun-Dong Chang
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
| | - Ju-Suk Nam
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
| | - Seonghun Park
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea
- * E-mail: (SP); (SSL)
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea
- * E-mail: (SP); (SSL)
| |
Collapse
|
13
|
Oungoulian SR, Hehir KE, Zhu K, Willis CE, Marinescu AG, Merali N, Ahmad CS, Hung CT, Ateshian GA. Effect of glutaraldehyde fixation on the frictional response of immature bovine articular cartilage explants. J Biomech 2013; 47:694-701. [PMID: 24332617 DOI: 10.1016/j.jbiomech.2013.11.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/19/2013] [Accepted: 11/24/2013] [Indexed: 10/25/2022]
Abstract
This study examined functional properties and biocompatibility of glutaraldehyde-fixed bovine articular cartilage over several weeks of incubation at body temperature to investigate its potential use as a resurfacing material in joint arthroplasty. In the first experiment, treated cartilage disks were fixed using 0.02, 0.20 and 0.60% glutaraldehyde for 24h then incubated, along with an untreated control group, in saline for up to 28d at 37°C. Both the equilibrium compressive and tensile moduli increased nearly twofold in treated samples compared to day 0 control, and remained at that level from day 1 to 28; the equilibrium friction coefficient against glass rose nearly twofold immediately after fixation (day 1) but returned to control values after day 7. Live explants co-cultured with fixed explants showed no quantitative difference in cell viability over 28d. In general, no significant differences were observed between 0.20 and 0.60% groups, so 0.20% was deemed sufficient for complete fixation. In the second experiment, cartilage-on-cartilage frictional measurements were performed under a migrating contact configuration. In the treated group, one explant was fixed using 0.20% glutaraldehyde while the apposing explant was left untreated; in the control group both explants were left untreated. From day 1 to 28, the treated group exhibited either no significant difference or slightly lower friction coefficient than the untreated group. These results suggest that a properly titrated glutaraldehyde treatment can reproduce the desired functional properties of native articular cartilage and maintain these properties for at least 28d at body temperature.
Collapse
Affiliation(s)
- Sevan R Oungoulian
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Kristin E Hehir
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Kaicen Zhu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Callen E Willis
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Anca G Marinescu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Natasha Merali
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | | | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Oungoulian SR, Chang S, Bortz O, Hehir KE, Zhu K, Willis CE, Hung CT, Ateshian GA. Articular cartilage wear characterization with a particle sizing and counting analyzer. J Biomech Eng 2013; 135:024501. [PMID: 23445072 DOI: 10.1115/1.4023456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quantitative measurements of cartilage wear have been challenging, with no method having yet emerged as a standard. This study tested the hypothesis that latest-generation particle analyzers are capable of detecting cartilage wear debris generated during in vitro loading experiments that last 24 h or less, by producing measurable content significantly above background noise levels otherwise undetectable through standard biochemical assays. Immature bovine cartilage disks (4 mm diameter, 1.3 mm thick) were tested against glass using reciprocal sliding under unconfined compression creep for 24 h. Control groups were used to assess various sources of contamination. Results demonstrated that cartilage samples subjected to frictional loading produced particulate volume significantly higher than background noise and contamination levels at all tested time points (1, 2, 6, and 24 h, p < 0.042). The particle counter was able to detect very small levels of wear (less than 0.02% of the tissue sample by volume), whereas no significant differences were observed in biochemical assays for collagen or glycosaminoglycans among any of the groups or time points. These findings confirm that latest-generation particle analyzers are capable of detecting very low wear levels in cartilage experiments conducted over a period no greater than 24 h.
Collapse
Affiliation(s)
- Sevan R Oungoulian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gadomski A, Bełdowski P, Rubì JM, Urbaniak W, Augé WK, Santamarìa-Holek I, Pawlak Z. Some conceptual thoughts toward nanoscale oriented friction in a model of articular cartilage. Math Biosci 2013; 244:188-200. [PMID: 23707486 DOI: 10.1016/j.mbs.2013.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 01/25/2023]
Abstract
This work presents a conceptual framework as to how a deficit in the synovial-fluid content, exemplified by hyaluronan or any other amphiphilic species, is capable of decisively altering the complex lubrication and wear conditions observed clinically in articular cartilage. The effect is revealed in (non)stationary regimes if the cartilage is subjected to some normal periodic load, revealing over its exploitation time increasingly dissipative, in general entropy-addressing, characteristics. It can be hypothesized that a Grotthuss-type proton transport physiology-concerning mechanism in channel-like, phospholipid-water cartilage's articulating nanospaces will be responsible for the expression of the lubrication mode. The corresponding wear involving overall change is then manifested adequately in the stationary regime, and in a viable system-parametric correlation with its lubrication counterpart. Certain analytic formulae for the nanoscale oriented coefficient of friction, involving generically H-bonds breaking mechanism, and pointing to some local-viscosity context, have been proposed for fitting the experimental data and clinical observations involving proton management at articular cartilage surfaces.
Collapse
Affiliation(s)
- Adam Gadomski
- University of Technology and Life Sciences, Institute of Mathematics and Physics, PL-85796 Bydgoszcz, Poland
| | | | | | | | | | | | | |
Collapse
|
16
|
Gao LL, Zhang CQ, Yang YB, Shi JP, Jia YW. Depth-dependent strain fields of articular cartilage under rolling load by the optimized digital image correlation technique. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2317-22. [DOI: 10.1016/j.msec.2013.01.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/21/2012] [Accepted: 01/23/2013] [Indexed: 11/26/2022]
|
17
|
[Tribological assessment of articular cartilage. A system for the analysis of the friction coefficient of cartilage, regenerates and tissue engineering constructs; initial results]. DER ORTHOPADE 2013; 41:827-36. [PMID: 23052849 DOI: 10.1007/s00132-012-1951-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Values for the friction coefficient of articular cartilage are given in ranges of percentage and lower and are calculated as a quotient of the friction force and the perpendicular loading force acting on it. Thus, a sophisticated system has to be provided for analysing the friction coefficient under different conditions in particular when cartilage should be coupled as friction partner. It is possible to deep-freeze articular cartilage before measuring the friction coefficient as the procedure has no influence on the results. The presented tribological system was able to distinguish between altered and native cartilage. Furthermore, tissue engineered constructs for cartilage repair were differentiated from native cartilage probes by their friction coefficient. In conclusion a tribological equipment is presented to analyze the friction coefficient of articular cartilage, in vivo generated cartilage regenerates and in vitro tissue engineered constructs regarding their biomechanical properties for quality assessment.
Collapse
|
18
|
Zhang CQ, Gao LL, Dong LM, Liu HY. Depth-dependent normal strain of articular cartilage under sliding load by the optimized digital image correlation technique. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
McGann ME, Vahdati A, Wagner DR. Methods to assess in vitro wear of articular cartilage. Proc Inst Mech Eng H 2012; 226:612-22. [PMID: 23057234 DOI: 10.1177/0954411912447014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
New orthopedic implants for focal cartilage defects replace only a portion of the articulating joint and wear against the opposing cartilage surface. The objective of this study was to investigate different methodologies to quantify cartilage wear for future use in screening potential implant materials and finishes. In determining the optimal test parameters, two different cartilage surface geometries were compared: smaller specimens had a flat surface, while larger ones made contact in the center but not at the edge owing to the curvature of the articulating surface. The cartilage wear of the two geometries was compared using three different techniques: the collagen worn from the cartilage specimens was assessed with a modified wear factor, the surface damage was made visible with Indian ink and was quantified, and the change in surface roughness was measured. To interpret the experimental results, maximum shear stresses were evaluated with sliding contact finite element models. Although the modified wear factor was considered to be the most accurate assessment of cartilage wear, surface damage was an effective, inexpensive, and quick technique to evaluate potential implant materials. Flat specimens showed excessive wear at the edges owing to a non-physiologic stress concentration, while the larger specimens wore more uniformly across the surface. These results will be applied to future studies evaluating prospective implant materials.
Collapse
Affiliation(s)
- Megan E McGann
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
20
|
Lizhang J, Fisher J, Jin Z, Burton A, Williams S. The effect of contact stress on cartilage friction, deformation and wear. Proc Inst Mech Eng H 2011; 225:461-75. [DOI: 10.1177/2041303310392626] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Following hip hemiarthroplasty, a metal femoral head articulates against natural acetabular cartilage. Cartilage friction and wear may be influenced by variables including loading time, contact stress, contact area, sliding distance, and sliding speed. The aim of this study was to investigate the effect of these variables on cartilage friction, deformation and wear in a simulation using idealized geometry model. Bovine cartilage pins were reciprocated against metal plates to mimic a hemiarthroplasty articulation under static loading. The effective coefficient of friction (µeff) under contact stresses (0.5 to 16 MPa), contact areas (12 and 64 mm2), stroke lengths (4 and 8 mm), sliding velocities (4 and 8 mm/s), and loading time (1 and 24 hours) were studied. The permanent deformation of cartilage (after 24 hours of recovery) with and without motion was recorded to assess cartilage linear wear. The µeff was found to remain < 0.35 with contact stresses ≤ 4 MPa. Severe damage to the cartilage occurred at contact stresses > 8 MPa and significantly increased µeff after 12 hours of reciprocation. In long-term, contact area had no significant effect on µeff, and sliding distance and velocity only affected µeff under low contact stresses. The cartilage linear wear increased with contact stress, sliding distance and velocity.
Collapse
Affiliation(s)
- J Lizhang
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - J Fisher
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Z Jin
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - A Burton
- DePuy International Ltd, Leeds, LS11 9DT, UK
| | - S Williams
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
21
|
Gleghorn JP, Doty SB, Warren RF, Wright TM, Maher SA, Bonassar LJ. Analysis of frictional behavior and changes in morphology resulting from cartilage articulation with porous polyurethane foams. J Orthop Res 2010; 28:1292-9. [PMID: 20309861 DOI: 10.1002/jor.21136] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Porous polyurethane foams (PUR) have been extensively evaluated as meniscal replacement materials and show great promise enabling infiltration of cells and fibrocartilage formation in vivo. Similar to most materials, PUR demonstrates progressive degeneration of opposing cartilage; however, the damage mechanism is impossible to determine because no information exists on the frictional properties of PUR-cartilage interfaces. The goals of this study were to characterize the frictional behavior of a cartilage-PUR interface across a range of articulating conditions and assess the resulting morphological changes to the cartilage surface following articulation. Articular cartilage was oscillated against PUR or stainless steel using phosphate-buffered saline (PBS) and synovial fluid as lubricants. Following friction testing, cartilage and PUR samples were analyzed with environmental scanning electron microscopy and histological staining to determine changes in tissue morphology. Stribeck-surface analysis demonstrated distinct lubrication modes; however, boundary mode lubrication was dominant in cartilage-PUR interfaces and the low-friction pressure-borne lubrication mechanism present in native joints was absent. Microscopy noted obvious wear, with disruption of the collagen architecture and concomitant proteoglycan loss in cartilage articulated against PUR. These data collectively point to the importance of frictional properties as design parameters for implants and materials for soft tissue replacement.
Collapse
Affiliation(s)
- Jason P Gleghorn
- Department of Biomedical Engineering, Cornell University, 149 Weill Hall, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
22
|
Shi L, Sikavitsas VI, Striolo A. Experimental friction coefficients for bovine cartilage measured with a pin-on-disk tribometer: testing configuration and lubricant effects. Ann Biomed Eng 2010; 39:132-46. [PMID: 20872073 DOI: 10.1007/s10439-010-0167-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 09/15/2010] [Indexed: 12/28/2022]
Abstract
The friction coefficient between wet articular cartilage surfaces was measured using a pin-on-disk tribometer adopting different testing configurations: cartilage-on-pin vs. alumina-on-disk (CA); cartilage-on-pin vs. cartilage-on-disk (CC); and alumina-on-pin vs. cartilage-on-disk (AC). Several substances were dissolved in the phosphate buffered saline (PBS) solution to act as lubricants: 10,000 molecular weight (MW) polyethylene glycol (PEG), 100,000 MW PEG, and chondroitin sulfate (CS), all at 100 mg/mL concentration. Scanning electron microscopy photographs of the cartilage specimens revealed limited wear due to the experiment. Conducting the experiments in PBS solutions we provide evidence according to which a commercial pin-on-disk tribometer allows us to assess different lubrication mechanisms active in cartilage. Specifically, we find that the measured friction coefficient strongly depends on the testing configuration. Our results show that the friction coefficient measured under CC and AC testing configurations remains very low as the sliding distance increases, probably because during the pin displacement the pores present in the cartilage replenish with PBS solution. Under such conditions the fluid phase supports a large load fraction for long times. By systematically altering the composition of the PBS solution we demonstrate the importance of solution viscosity in determining the measured friction coefficient. Although the friction coefficient remains low under the AC testing configuration in PBS, 100 mg/mL solutions of both CS and 100,000 MW PEG in PBS further reduce the friction coefficient by ~40%. Relating the measured friction coefficient to the Hersey number, our results are consistent with a Stribeck curve, confirming that the friction coefficient of cartilage under the AC testing configuration depends on a combination of hydrodynamic, boundary, and weep bearing lubrication mechanisms.
Collapse
Affiliation(s)
- Liu Shi
- School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | | | | |
Collapse
|
23
|
Anderson DD, Tochigi Y, Rudert MJ, Vaseenon T, Brown TD, Amendola A. Effect of implantation accuracy on ankle contact mechanics with a metallic focal resurfacing implant. J Bone Joint Surg Am 2010; 92:1490-500. [PMID: 20516325 PMCID: PMC2874671 DOI: 10.2106/jbjs.i.00431] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Talar osteochondral defects can lead to joint degeneration. Focal resurfacing with a metallic implant has shown promise in other joints. We studied the effect of implantation accuracy on ankle contact mechanics after focal resurfacing of a defect in the talar dome. METHODS Static loading of seven cadaver ankles was performed before and after creation of a 15-mm-diameter osteochondral defect on the talar dome, and joint contact stresses were measured. The defect was then resurfaced with a metallic implant, with use of a custom implant-bone interface fixture that allowed fine control (in 0.25-mm steps) of implantation height. Stress measurements were repeated at heights of -0.5 to +0.5 mm relative to an as-implanted reference. Finite element analysis was used to determine the effect of implant height, post axis rotation, and valgus/varus tilt over a motion duty cycle. RESULTS With the untreated defect, there was a 20% reduction in contact area and a 40% increase in peak contact stress, as well as a shift in the location of the most highly loaded region, as compared with the values in the intact condition. Resurfacing led to recovery of 90% of the contact area that had been measured in the intact specimen, but the peak contact stresses remained elevated. With the implant 0.25 mm proud, peak contact stress was 220% of that in the intact specimen. The results of the finite element analyses agreed closely with those of the experiments and additionally showed substantial variations in defect influences on contact stresses across the motion arc. Talar internal/external rotations also differed for the unfilled defect. Focal implant resurfacing substantially restored kinematics but did not restore the stresses to the levels in the intact specimens. CONCLUSIONS Focal resurfacing with a metallic implant appears to have the potential to restore normal joint mechanics in ankles with a large talar osteochondral defect. However, contact stresses were found to be highly sensitive to implant positioning.
Collapse
Affiliation(s)
- Donald D. Anderson
- Department of Orthopaedics and Rehabilitation, Orthopaedic Biomechanics Laboratory, The University of Iowa, 2181 Westlawn Building, Iowa City, IA 52242-1100. E-mail address for D.D. Anderson:
| | - Yuki Tochigi
- Department of Orthopaedics and Rehabilitation, Orthopaedic Biomechanics Laboratory, The University of Iowa, 2181 Westlawn Building, Iowa City, IA 52242-1100. E-mail address for D.D. Anderson:
| | - M. James Rudert
- Department of Orthopaedics and Rehabilitation, Orthopaedic Biomechanics Laboratory, The University of Iowa, 2181 Westlawn Building, Iowa City, IA 52242-1100. E-mail address for D.D. Anderson:
| | - Tanawat Vaseenon
- Department of Orthopaedics and Rehabilitation, Orthopaedic Biomechanics Laboratory, The University of Iowa, 2181 Westlawn Building, Iowa City, IA 52242-1100. E-mail address for D.D. Anderson:
| | - Thomas D. Brown
- Department of Orthopaedics and Rehabilitation, Orthopaedic Biomechanics Laboratory, The University of Iowa, 2181 Westlawn Building, Iowa City, IA 52242-1100. E-mail address for D.D. Anderson:
| | - Annunziato Amendola
- Department of Orthopaedics and Rehabilitation, Orthopaedic Biomechanics Laboratory, The University of Iowa, 2181 Westlawn Building, Iowa City, IA 52242-1100. E-mail address for D.D. Anderson:
| |
Collapse
|
24
|
Williams GM, Chan EF, Temple-Wong MM, Bae WC, Masuda K, Bugbee WD, Sah RL. Shape, loading, and motion in the bioengineering design, fabrication, and testing of personalized synovial joints. J Biomech 2010; 43:156-65. [PMID: 19815214 PMCID: PMC2813363 DOI: 10.1016/j.jbiomech.2009.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
With continued development and improvement of tissue engineering therapies for small articular lesions, increased attention is being focused on the challenge of engineering partial or whole synovial joints. Joint-scale constructs could have applications in the treatment of large areas of articular damage or in biological arthroplasty of severely degenerate joints. This review considers the roles of shape, loading and motion in synovial joint mechanobiology and their incorporation into the design, fabrication, and testing of engineered partial or whole joints. Incidence of degeneration, degree of impairment, and efficacy of current treatments are critical factors in choosing a target for joint bioengineering. The form and function of native joints may guide the design of engineered joint-scale constructs with respect to size, shape, and maturity. Fabrication challenges for joint-scale engineering include controlling chemo-mechano-biological microenvironments to promote the development and growth of multiple tissues with integrated interfaces or lubricated surfaces into anatomical shapes, and developing joint-scale bioreactors which nurture and stimulate the tissue with loading and motion. Finally, evaluation of load-bearing and tribological properties can range from tissue to joint scale and can focus on biological structure at present or after adaptation.
Collapse
Affiliation(s)
- Gregory M. Williams
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Elaine F. Chan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Won C. Bae
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Koichi Masuda
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - William D. Bugbee
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA, USA
- Division of Orthopaedic Surgery, Scripps Clinic, La Jolla, CA, USA
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
25
|
Li F, Su Y, Wang J, Wu G, Wang C. Influence of dynamic load on friction behavior of human articular cartilage, stainless steel and polyvinyl alcohol hydrogel as artificial cartilage. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:147-154. [PMID: 19756967 DOI: 10.1007/s10856-009-3863-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 08/24/2009] [Indexed: 05/28/2023]
Abstract
Many biomaterials are being developed to be used for cartilage substitution and hemiarthroplasty implants. The lubrication property is a key feature of the artificial cartilage. The frictional behavior of human articular cartilage, stainless steel and polyvinyl alcohol (PVA) hydrogel were investigated under cartilage-on-PVA hydrogel contact, cartilage-on-cartilage contact and cartilage-on-stainless steel contact using pin-on-plate method. Tests under static load, cyclic load and 1 min load change were used to evaluate friction variations in reciprocating motion. The results showed that the lubrication property of cartilage-on-PVA hydrogel contact and cartilage-on-stainless steel contact were restored in both 1 min load change and cyclic load tests. The friction coefficient of PVA hydrogel decreased from 0.178 to 0.076 in 60 min, which was almost one-third of the value under static load in continuous sliding tests. In each test, the friction coefficient of cartilage-on-cartilage contact maintained far lower value than other contacts. It is indicated that a key feature of artificial cartilage is the biphasic lubrication properties.
Collapse
Affiliation(s)
- Feng Li
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Luo Y, McCann L, Ingham E, Jin ZM, Ge S, Fisher J. Polyurethane as a potential knee hemiarthroplasty biomaterial: An in-vitro simulation of its tribological performance. Proc Inst Mech Eng H 2009; 224:415-25. [DOI: 10.1243/09544119jeim657] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hemiarthroplasty is an attractive alternative to total joint replacement for the young active patient, when only one side of the synovial joint is damaged. In the development of a hemiarthroplasty prosthesis, a comprehensive understanding of the tribology of both the natural joint and the hemireplaced joint is necessary. The objectives of this study were to investigate the tribological response of polyurethane (PU) as a potential hemiarthroplasty material. Bovine medial compartmental knees were tested in a Prosim pendulum friction simulator, which applied physiologically relevant loading and motion. The healthy medial compartment was investigated as a negative control; a stainless steel hemiarthroplasty was investigated as a positive control; and three PU hemiarthroplasty plates of different moduli (1.4 MPa, 6.5 MPa, and 22 MPa) were also investigated. Using the lower-modulus PU caused reduced levels of contact stress and friction shear stress, which resulted in reduced levels of opposing cartilage wear. The two PU bearings with the lowest moduli demonstrated a similar tribological performance to the negative control. The higher-modulus PU (22 MPa) did demonstrate higher levels of friction shear stress, and wear resulted on the opposing cartilage, although not as severe as the wear from the stainless steel group. This study supports the use of compliant PU designs in future tribological experiments and hemiarthroplasty design applications.
Collapse
Affiliation(s)
- Y Luo
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - L McCann
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - E Ingham
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Z-M Jin
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - S Ge
- Institute of Tribology and Reliability Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, People's Republic of China
| | - J Fisher
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
27
|
Shekhawat VK, Laurent MP, Muehleman C, Wimmer MA. Surface topography of viable articular cartilage measured with scanning white light interferometry. Osteoarthritis Cartilage 2009; 17:1197-203. [PMID: 19349041 DOI: 10.1016/j.joca.2009.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/09/2009] [Accepted: 03/18/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE By means of scanning white light interferometry, develop a noncontact, nondestructive technique capable of measuring surface topography of viable cartilage. METHODS Using full thickness cylindrical cartilage explants obtained from bovine calf knees, experiments were performed to produce a surface preparation protocol that yields highly repeatable topographical measurements while maintaining cartilage viability. To further validate the technique, a series of human talar cartilage samples, displaying varying degrees of cartilage degeneration, was then subjected to interferometric measurements and compared to their histology. RESULTS A key aspect of the technique of surface topographic measurement by interferometry was the development of an optimal surface preparation process. The technique was successfully validated against standard 2-D profilometry. The intrinsic variability of the technique is less than 2%, which is much less than the average point-to-point variability of 17% observed across a cartilage specimen. The technique was hence sufficiently sensitive to readily detect differences in roughness between surfaces of healthy cartilage in different locations on the bovine knee. Thus, the average roughness of the medial explants exceeded that of the lateral explants by 0.35 microm Ra (P=0.003) and the roughness of the trochlear explants exceeded that of the condylar explants by 0.55 microm Ra (P<0.0001). Also, applying this technique to diseased human talar cartilage samples, a statistically significant increase in the average surface roughness value per unit increase in histological degeneration score was observed (> or =0.2 microm Ra, P< or =0.041), making surface roughness obtained via interferometry a useful parameter for evaluating cartilage health nondestructively. CONCLUSIONS The aim of developing a protocol based on white light interferometry to measure the surface topography of viable articular cartilage was achieved. This interferometric technique opens the door to monitoring the surface topography of live cartilage, as is desirable for ex vivo tests on cartilage explants.
Collapse
Affiliation(s)
- V K Shekhawat
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
28
|
McCann L, Ingham E, Jin Z, Fisher J. Influence of the meniscus on friction and degradation of cartilage in the natural knee joint. Osteoarthritis Cartilage 2009; 17:995-1000. [PMID: 19328878 DOI: 10.1016/j.joca.2009.02.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 01/30/2009] [Accepted: 02/15/2009] [Indexed: 02/02/2023]
Abstract
BACKGROUND Total meniscectomy has been shown to cause early-onset arthritis in the underlying cartilage and bone in the knee joint, demonstrating that the meniscus plays an important protective role in the load carrying capacity. Relationships between friction and wear in synovial joints are complex due to the biphasic nature of articular cartilage and the time dependency of tribological responses. Determination of friction and wear in the whole natural joint in vitro or in vivo is technically difficult and the tribological effect of meniscectomy has not been previously studied in an articulating knee joint. OBJECTIVE The aim of this study was to use a tribological simulation of the medial compartmental bovine knee, to investigate friction and wear, with and without the meniscus. We hypothesised that meniscectomy would lead to elevated contact stress and frictional coefficient across the joint. METHODS Skeletally mature bovine medial compartmental knee joints were dissected and mounted in a pendulum friction simulator, which was used to apply physiologically relevant loading and motion. Wear was quantified using micro-MRI scans and surface profilometry. RESULTS Knees tested with the intact meniscus showed no change in surface roughness and no detectable cartilage loss or deformation. However, increased contact stress and frictional coefficient upon removal of the meniscus, led to immediate surface fibrillation, biomechanical wear and permanent deformation of cartilage. CONCLUSIONS This study presents, for the first time, an in vitro model simulation system to investigate the tribological effects of meniscectomy and meniscus repair and regeneration.
Collapse
Affiliation(s)
- L McCann
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, UK. Woodhouse Lane, Leeds LS2 9JT, UK.
| | | | | | | |
Collapse
|
29
|
McCann L, Ingham E, Jin Z, Fisher J. An investigation of the effect of conformity of knee hemiarthroplasty designs on contact stress, friction and degeneration of articular cartilage: A tribological study. J Biomech 2009; 42:1326-31. [DOI: 10.1016/j.jbiomech.2009.03.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/02/2009] [Accepted: 03/03/2009] [Indexed: 11/24/2022]
|
30
|
Katta J, Jin Z, Ingham E, Fisher J. Effect of nominal stress on the long term friction, deformation and wear of native and glycosaminoglycan deficient articular cartilage. Osteoarthritis Cartilage 2009; 17:662-8. [PMID: 19028431 DOI: 10.1016/j.joca.2008.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 10/18/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Earlier in vitro studies have shown that the coefficient of friction (COF) of cartilage decreases with increasing load at the lower end of the physiological loading spectrum. At these lower load levels, depletion of glycosaminoglycans (GAGs) from native cartilage has been shown to elevate the COF levels. The current study evaluated the long-term friction, deformation and wear of native and GAG deficient cartilage at a wide range of physiological stress levels in vitro. METHODS A pin-on-plate machine (sliding velocity: 4 mm/s and stroke length: 4 mm) was used to measure the COF of native and GAG deficient cartilage at applied contact stress levels of 0.5 MPa, 2 MPa, and 3.15 MPa in 7h long friction tests with phosphate buffered saline (PBS) lubrication. The resultant deformation and wear of the cartilage samples due to the friction tests were measured using a height vernier apparatus and lubricant analysis respectively. RESULTS AND CONCLUSIONS An increase in contact stress from 0.5 MPa to 3.15 MPa resulted in an increase in the COF and wear of native cartilage samples, due to cartilage tissue's inability to rehydrate itself completely and maintain a high fluid load support at the 4 mm stroke length under high contact stress levels. There was no effect of increasing contact stress levels on the COF and wear of GAG deficient cartilage samples due to the very high deformations observed in these samples and the smoothening of their surfaces under the higher loads, leading to the development of conforming surfaces during articulation.
Collapse
Affiliation(s)
- J Katta
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, West Yorkshire, UK
| | | | | | | |
Collapse
|
31
|
Katta J, Jin Z, Ingham E, Fisher J. Biotribology of articular cartilage--a review of the recent advances. Med Eng Phys 2008; 30:1349-63. [PMID: 18993107 DOI: 10.1016/j.medengphy.2008.09.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/17/2008] [Accepted: 09/22/2008] [Indexed: 11/24/2022]
Abstract
A brief review of the advances in the biotribology of articular cartilage in the last decade or so are presented. The review is limited to experimental friction and wear studies involving articular cartilage. The importance of developing in vitro models as tools not only to understand the cartilage tribological characteristics, but to evaluate current and future cartilage substitution and treatment therapies is discussed.
Collapse
Affiliation(s)
- Jayanth Katta
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | | | | | | |
Collapse
|