1
|
DeWitt JT, Raghunathan M, Haricharan S. Nonrepair functions of DNA mismatch repair proteins: new avenues for precision oncology. Trends Cancer 2025; 11:49-61. [PMID: 39490324 DOI: 10.1016/j.trecan.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
DNA damage repair (DDR) proteins are well recognized as guardians of the genome that are frequently lost during malignant transformation of normal cells across cancer types. To date, their tumor suppressor functions have been generally regarded as a consequence of their roles in maintaining genomic stability: more genomic instability increases the risk of oncogenic transformation events. However, recent discoveries centering around DNA mismatch repair (MMR) proteins suggest a broader impact of the loss of DDR proteins on cellular processes beyond genomic instability. Here, we explore the clinical implications of nonrepair roles for DDR proteins, using the growing evidence supporting roles for DNA MMR proteins in cell cycle and apoptosis regulation, metabolic function, the cellular secretome, and immunomodulation.
Collapse
Affiliation(s)
- Jerry Tyler DeWitt
- Department of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA
| | - Megha Raghunathan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Svasti Haricharan
- Department of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA.
| |
Collapse
|
2
|
Veschetti L, Treccani M, De Tomi E, Malerba G. Genomic Instability Evolutionary Footprints on Human Health: Driving Forces or Side Effects? Int J Mol Sci 2023; 24:11437. [PMID: 37511197 PMCID: PMC10380557 DOI: 10.3390/ijms241411437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
In this work, we propose a comprehensive perspective on genomic instability comprising not only the accumulation of mutations but also telomeric shortening, epigenetic alterations and other mechanisms that could contribute to genomic information conservation or corruption. First, we present mechanisms playing a role in genomic instability across the kingdoms of life. Then, we explore the impact of genomic instability on the human being across its evolutionary history and on present-day human health, with a particular focus on aging and complex disorders. Finally, we discuss the role of non-coding RNAs, highlighting future approaches for a better living and an expanded healthy lifespan.
Collapse
Affiliation(s)
| | | | | | - Giovanni Malerba
- GM Lab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (M.T.); (E.D.T.)
| |
Collapse
|
3
|
Kleist B, Meurer T, Poetsch M. Mitochondrial DNA alteration in primary and metastatic colorectal cancer: Different frequency and association with selected clinicopathological and molecular markers. Tumour Biol 2017; 39:1010428317692246. [PMID: 28345467 DOI: 10.1177/1010428317692246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study attempts to determine whether primary tumor tissue could reliably represent metastatic colorectal cancer in therapy-guiding analysis of mitochondrial microsatellite instability. Therefore, we investigated the concordance of microsatellite instability in D310, D514, and D16184 (mitochondrial DNA displacement loop), and its association with selected clinical categories and KRAS/NRAS/BRAF/PIK3CA/TP53 mutation status between primary and metastatic colorectal cancer tissue from 119 patients. Displacement loop microsatellite instability was significantly more frequently seen in lymph node metastases (53.1%) compared to primary tumors (37.5%) and distant metastases (21.4%) ( p = 0.0183 and p = 0.0005). The discordant rate was significantly higher in lymph node metastases/primary tumor pairs (74.6%) than in distant metastases/primary tumor pairs (52.4%) or lymph node metastases/distant metastases pairs (51.6%) ( p = 0.0113 and p = 0.0261) with more gain (86.7%) than loss (61.1%) of microsatellite instability in the discordant lymph node metastases ( p = 0.0024). Displacement loop instability occurred significantly more frequently in lymph node metastases and distant metastases of patients with early colorectal cancer onset age <60 years ( p = 0.0122 and p = 0.0129), was found with a significant high rate in a small cohort of TP53-mutated distant metastases ( p = 0.0418), and was associated with TP53 wild-type status of primary tumors ( p = 0.0009), but did not correlate with KRAS, NRAS, BRAF, or PIK3CA mutations. In conclusion, mitochondrial microsatellite instability and its association with selected clinical and molecular markers are discordant in primary and metastatic colorectal cancer, which could have importance for surveillance and therapeutic strategies.
Collapse
Affiliation(s)
- Britta Kleist
- 1 Department of Pathology, Southern Hospital Trust, Kristiansand, Norway
| | - Thuja Meurer
- 2 Institute of Legal Medicine, University Hospital Essen, Essen, Germany
| | - Micaela Poetsch
- 2 Institute of Legal Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
4
|
Tsai MH, Chen WC, Yu SL, Chen CC, Jao TM, Huang CY, Tzeng ST, Yen SJ, Yang YC. DNA Hypermethylation of SHISA3 in Colorectal Cancer: An Independent Predictor of Poor Prognosis. Ann Surg Oncol 2015; 22 Suppl 3:S1481-9. [DOI: 10.1245/s10434-015-4593-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 12/31/2022]
|
5
|
Lee JH, Hwang I, Kang YN, Choi IJ, Kim DK. Genetic characteristics of mitochondrial DNA was associated with colorectal carcinogenesis and its prognosis. PLoS One 2015; 10:e0118612. [PMID: 25734426 PMCID: PMC4348484 DOI: 10.1371/journal.pone.0118612] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
Clinical value of mitochondrial DNA has been described in colorectal cancer (CRC). To clarify its role in colorectal carcinogenesis, mitochondrial microsatellite instability (mtMSI) and other markers were investigated in CRCs and their precancerous lesions, as a multitier genetic study. DNA was isolated from paired normal and tumoral tissues in 78 tubular adenomas (TAs), 34 serrated polyps (SPs), and 100 CRCs. mtMSI, nucleus microsatellite instability (nMSI), KRAS mutation, and BRAF mutation were investigated in these tumors and their statistical analysis was performed. mtMSI was found in 30% of CRCs and 21.4% of precancerous lesions. Mitochondrial copy number was higher in SPs than TAs and it was associated with mtMSI in low grade TAs. KRAS and BRAF mutations were mutually exclusive in TAs and SPs. CRCs with mtMSI showed shorter overall survival times than the patients without mtMSI. In CRCs without nMSI or BRAF mutation, mtMSI was a more accurate marker for predicting prognosis. The genetic change of mitochondrial DNA is an early and independent event in colorectal precancerous lesions and mtMSI and mitochondrial contents are associated with the tubular adenoma-carcinoma sequence, resulting in poor prognosis. This result suggested that the genetic change in mitochondrial DNA appears to be a possible prognosis marker in CRC.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Ilseon Hwang
- Department of Pathology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Yu-Na Kang
- Department of Pathology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - In-Jang Choi
- Department of Anatomy, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Dae-Kwang Kim
- Department of Medical Genetics, Keimyung University School of Medicine, Daegu, Republic of Korea; Hanvit Institute for Medical Genetics, City Women's Clinic, Buk-gu, Daegu, Republic of Korea
| |
Collapse
|
6
|
Venderbosch S, van Vliet S, Craenmehr MHC, Simmer F, de Haan AFJ, Punt CJA, Koopman M, Nagtegaal ID. Mitochondrial microsatellite instability in patients with metastatic colorectal cancer. Virchows Arch 2015; 466:495-502. [PMID: 25697538 PMCID: PMC4422840 DOI: 10.1007/s00428-015-1733-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Mitochondrial microsatellite instability (mtMSI), a change in length in mtDNA microsatellite sequences between normal and tumor tissue, has been described as a frequent occurrence in colorectal cancer (CRC). We evaluated the prevalence and prognostic value of mtMSI and its relation to nuclear microsatellite instability (MSI) in patients with metastatic CRC (mCRC). At six loci (D310, D514, D16184, ND1, ND5, and COX1), the mitochondrial DNA sequence was analyzed in normal and tumor tissue, and the mtMSI status was determined. We evaluated the prevalence and outcome in terms of overall survival (OS) in 83 CRC patients with a MSI tumor (including 39 patients with Lynch syndrome) and in 99 mCRC patients with a microsatellite stable (MSS) tumor. A meta-analysis was performed to compare our findings with existing data. mtMSI at the D-loop region was found in 54.4 % (99 out of 182) of all patients. Prevalence of mtMSI was most pronounced at the D310 locus (50.5 %). Prevalence of mtMSI at the D-loop region was not different among patients with MSI compared to MSS tumors. There was no effect of mtMSI on prognosis in patients with MSI or MSS tumors. Prevalence of mtMSI was high in mCRC patients with both MSI and MSS tumors, but there was no correlation with prognosis. mtMSI was particularly present at the D310 locus.
Collapse
Affiliation(s)
- S. Venderbosch
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
- Department of Medical Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - S. van Vliet
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - M. H. C. Craenmehr
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - F. Simmer
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - A. F. J. de Haan
- Department for Health Evidence, Section Biostatistics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C. J. A. Punt
- Department of Medical Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - M. Koopman
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - I. D. Nagtegaal
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
7
|
Jao TM, Tsai MH, Lio HY, Weng WT, Chen CC, Tzeng ST, Chang CY, Lai YC, Yen SJ, Yu SL, Yang YC. Protocadherin 10 suppresses tumorigenesis and metastasis in colorectal cancer and its genetic loss predicts adverse prognosis. Int J Cancer 2014; 135:2593-603. [PMID: 24740680 DOI: 10.1002/ijc.28899] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/02/2014] [Indexed: 12/11/2022]
Abstract
Protocadherin 10 (PCDH10), a novel tumor suppressor gene in human cancers, is located in a common deleted region at chromosome 4q28 in colorectal cancer (CRC). This study aimed to ascertain the genetic loss of PCDH10 and its clinical relevance in CRC and to explore the tumor suppressor function of PCDH10. The genetic deletion of PCDH10 was determined in 171 pairs of primary tumors and corresponding normal mucosae by loss of heterozygosity study. In total, 53 carcinomas were positive for allelic loss of PCDH10. The genetic aberration was significantly associated with tumor progression and distant metastasis (p = 0.021 and p = 0.018, respectively) and was an independent predictor of poor survival for CRC patients (p = 0.005). Expression of PCDH10 gene was silenced or markedly down-regulated in all of 12 CRC cell lines tested and in 41 of 53 colorectal carcinomas compared with their matched normal mucosae. Ectopic expression of PCDH10 suppressed cancer cell proliferation, anchorage-independent growth, migration and invasion in vitro. Subcutaneous injection of PCDH10-expressing CRC cells into SCID mice revealed the reduction of tumor growth compared with that observed in mock-inoculated mice. Furthermore, through intrasplenic implantation, the re-expression of PCDH10 in silenced cells restrained liver metastasis and improved survival in SCID mice. In conclusion, PCDH10 is a pivotal tumor suppressor in CRC, and the loss of its function promotes not only tumor progression but also liver metastasis. In addition, the genetic deletion of PCDH10 represents an adverse prognostic marker for the survival of patients with CRC.
Collapse
Affiliation(s)
- Tzu-Ming Jao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Santos C, Vilar E, Capella G, Salazar R. Molecular markers in colorectal cancer: clinical relevance in stage II colon cancer. COLORECTAL CANCER 2013. [DOI: 10.2217/crc.13.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SUMMARY Colorectal cancer is the second most common cause of cancer death in developed countries. Adjuvant chemotherapy is standard for stage III colorectal cancer but its use in stage II is controversial. Several clinicopathological factors have been described to define a high-risk group among stage II colon cancers, which can aid the selection of patients who may benefit from chemotherapy. Local tumor invasion (T4), high histological grade, obstruction and perforation at diagnosis, and number of lymph nodes removed are the most widely accepted factors. Several molecular factors have been also investigated as prognostic candidate biomarkers. DNA ploidy, KRAS and TP53 mutations, thymidylate synthase, dihydropyrimidine dehydrogenase, thymidine phosphorylase, loss of heterozygosity on chromosome 18q and microsatellite instability have been widely investigated. The aim of this review is to analyze the current evidence and clinical applications of the classical molecular biomarkers as well as new ones such as BRAF, circulating tumor cells, genome expression signatures and DNA methylation.
Collapse
Affiliation(s)
- Cristina Santos
- Department of Medical Oncology, Institut Català d’Oncologia – Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, 08907, Spain
- Translational Research Laboratory, Institut Català d’Oncologia – Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Capella
- Translational Research Laboratory, Institut Català d’Oncologia – Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - Ramon Salazar
- Translational Research Laboratory, Institut Català d’Oncologia – Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, 08907, Spain
- Department of Medical Oncology, Institut Català d’Oncologia – Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, 08907, Spain
| |
Collapse
|
9
|
Tsai MH, Fang WH, Lin SH, Tzeng ST, Huang CS, Yen SJ, Chou SJ, Yang YC. Mapping of Genetic Deletions on Chromosome 3 in Colorectal Cancer: Loss of 3p25-pter is Associated with Distant Metastasis and Poor Survival. Ann Surg Oncol 2011; 18:2662-70. [DOI: 10.1245/s10434-011-1603-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Indexed: 11/18/2022]
|