1
|
Qin XR, Huang JK, Yin QF, Shi XM, Tang JC, Hao LL, Li PF, Zhu J, Wang YX. Clinicopathological significance of epidermal growth factor receptor expression in papillary thyroid carcinoma: a meta-analysis. Minerva Endocrinol (Torino) 2024; 49:175-181. [PMID: 33435649 DOI: 10.23736/s2724-6507.20.03388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
INTRODUCTION This study aimed to determine the relationship between the expression of epidermal growth factor receptor (EGFR) and pathological indicators in papillary thyroid carcinoma (PTC). EVIDENCE ACQUISITION PubMed, Embase, Web of Science, MEDLINE, and Cochrane Library databases were searched for relevant clinical trials. The odds ratio (OR) and 95% confidence interval (CI) showed the effect magnitude of the expression of EGFR, age, gender, tumor size, lymph node metastasis (LNM), extrathyroid extension, and tumor, lymph node, metastasis) stage. Stata 12.0 was used for statistical analysis of data. EVIDENCE SYNTHESIS A total of 845 cases of PTC were included through the retrieval of 8 studies performed abroad. EGFR significantly correlated with extrathyroid extension (OR=3.25; 95% CI: 1.25-8.43; Z=2.42; P=0.015), LNM (OR=8.40; 95% CI: 5.44-12.97; Z=9.61; P=0.000), TNM stage (OR=2.30, 95% CI: 1.51-3.51; Z=3.87; P=0.000), and tumor size (OR=1.68; 95% CI: 1.06-2.68; Z=2.19; P=0.03). EGFR had no correlation with age (OR=1.13; 95% CI: 0.83-1.53; Z=0.77; P=0.44), gender (OR=0.93; 95% CI: 0.66-1.33; Z=0.38; P=0.70). Sensitivity analysis demonstrated that the studies by Cui Tang and Alfred King Yin Lam in LNM impacted the pooled OR. After removing these two studies, relatively stable results between the expression of EGFR and LNM were obtained. CONCLUSIONS The results in the expression of EGFR is frequent and cancer-specific event in PTC. Besides, the expression of EGFR was involved in the progression and metastasis of PTC.
Collapse
Affiliation(s)
- Xiao-Ru Qin
- North China University of Science and Technology, Tangshan, China
| | - Jin-Ke Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi-Fan Yin
- Hebei General Hospital, Shijiazhuang, China
| | | | - Jia-Chen Tang
- North China University of Science and Technology, Tangshan, China
| | - Ling-Ling Hao
- North China University of Science and Technology, Tangshan, China
| | - Peng-Fei Li
- North China University of Science and Technology, Tangshan, China
| | - Jia Zhu
- North China University of Science and Technology, Tangshan, China
| | | |
Collapse
|
2
|
Kim J, Lee TS, Lee MH, Cho IR, Ryu JK, Kim YT, Lee SH, Paik WH. Pancreatic Cancer Treatment Targeting the HGF/c-MET Pathway: The MEK Inhibitor Trametinib. Cancers (Basel) 2024; 16:1056. [PMID: 38473413 DOI: 10.3390/cancers16051056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic cancer is characterized by fibrosis/desmoplasia in the tumor microenvironment, which is primarily mediated by pancreatic stellate cells and cancer-associated fibroblasts. HGF/c-MET signaling, which is instrumental in embryonic development and wound healing, is also implicated for its mitogenic and motogenic properties. In pancreatic cancer, this pathway, along with its downstream signaling pathways, is associated with disease progression, prognosis, metastasis, chemoresistance, and other tumor-related factors. Other features of the microenvironment in pancreatic cancer with the HGF/c-MET pathway include hypoxia, angiogenesis, metastasis, and the urokinase plasminogen activator positive feed-forward loop. All these attributes critically influence the initiation, progression, and metastasis of pancreatic cancer. Therefore, targeting the HGF/c-MET signaling pathway appears promising for the development of innovative drugs for pancreatic cancer treatment. One of the primary downstream effects of c-MET activation is the MAPK/ERK (Ras, Ras/Raf/MEK/ERK) signaling cascade, and MEK (Mitogen-activated protein kinase kinase) inhibitors have demonstrated therapeutic value in RAS-mutant melanoma and lung cancer. Trametinib is a selective MEK1 and MEK2 inhibitor, and it has evolved as a pivotal therapeutic agent targeting the MAPK/ERK pathway in various malignancies, including BRAF-mutated melanoma, non-small cell lung cancer and thyroid cancer. The drug's effectiveness increases when combined with agents like BRAF inhibitors. However, resistance remains a challenge, necessitating ongoing research to counteract the resistance mechanisms. This review offers an in-depth exploration of the HGF/c-MET signaling pathway, trametinib's mechanism, clinical applications, combination strategies, and future directions in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Junyeol Kim
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae Seung Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Myeong Hwan Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - In Rae Cho
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ji Kon Ryu
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong-Tae Kim
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Hyub Lee
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Woo Hyun Paik
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
3
|
Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188869. [PMID: 36842767 DOI: 10.1016/j.bbcan.2023.188869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/28/2023]
Abstract
Pancreatic cancer (PC) is very deadly and difficult to treat. The presence of hypoxia has been shown to increase the probability of cancer developing and spreading. Pancreatic ductal adenocarcinoma (PDAC/PC) has traditionally viewed a highly lethal form of cancer due to its high occurrence of early metastases. Desmoplasia/stroma is often thick and collagenous, with pancreatic stellate cells as the primary source (PSCs). Cancer cells and other stromal cells interact with PSCs, promoting disease development. The hepatocyte growth factor (HGF)/c-MET pathway have been proposed as a growth factor mechanism mediating this interaction. Human growth factor (HGF) is secreted by pancreatic stellate cells (PSCs), and its receptor, c-MET, is generated by pancreatic cancer cells and endothelial cells. Hypoxia is frequent in malignant tumors, particularly pancreatic (PC). Hypoxia results from limitless tumor development and promotes survival, progression, and invasion. Hypoxic is becoming a critical driver and therapeutic target of pancreatic cancer as its hypoxia microenvironment is defined. Recent breakthroughs in cancer biology show that hypoxia promotes tumor proliferation, aggressiveness, and therapeutic resistance. Hypoxia-inducible factors (HIFs) stabilize hypoxia signaling. Hypoxia cMet is a key component of pancreatic tumor microenvironments, which also have a fibrotic response, that hypoxia, promotes and modulates. c-Met is a tyrosine-protein kinase. As describe it simply, the MET gene in humans' codes for a protein called hepatocyte growth factor receptor (HGFR). Most cancerous tumors and pancreatic cancer in particular, suffer from a lack of oxygen (PC). Due to unrestrained tumor development, hypoxia develops, actively contributing to tumor survival, progression, and invasion. As the processes by which hypoxia signaling promotes invasion and metastasis become clear, c-MET has emerged as an important determinant of pancreatic cancer malignancy and a potential pharmacological target. This manuscript provides the most current findings on the role of hypoxia and HGF/c-MET expression in the treatment of pancreatic cancer.
Collapse
|
4
|
Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV. Targeting HGF/c-MET Axis in Pancreatic Cancer. Int J Mol Sci 2020; 21:E9170. [PMID: 33271944 PMCID: PMC7730415 DOI: 10.3390/ijms21239170] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma (PDAC/PC)) has been an aggressive disease that is associated with early metastases. It is characterized by dense and collagenous desmoplasia/stroma, predominantly produced by pancreatic stellate cells (PSCs). PSCs interact with cancer cells as well as other stromal cells, facilitating disease progression. A candidate growth factor pathway that may mediate this interaction is the hepatocyte growth factor (HGF)/c-MET pathway. HGF is produced by PSCs and its receptor c-MET is expressed on pancreatic cancer cells and endothelial cells. The current review discusses the role of the MET/HGF axis in tumour progression and dissemination of pancreatic cancer. Therapeutic approaches that were developed targeting either the ligand (HGF) or the receptor (c-MET) have not been shown to translate well into clinical settings. We discuss a two-pronged approach of targeting both the components of this pathway to interrupt the stromal-tumour interactions, which may represent a potential therapeutic strategy to improve outcomes in PC.
Collapse
Affiliation(s)
- Srinivasa P. Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - David Goldstein
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Romano C. Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Jeremy S. Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Minoti V. Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
5
|
Slapak EJ, Duitman J, Tekin C, Bijlsma MF, Spek CA. Matrix Metalloproteases in Pancreatic Ductal Adenocarcinoma: Key Drivers of Disease Progression? BIOLOGY 2020; 9:biology9040080. [PMID: 32325664 PMCID: PMC7235986 DOI: 10.3390/biology9040080] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is a dismal disorder that is histologically characterized by a dense fibrotic stroma around the tumor cells. As the extracellular matrix comprises the bulk of the stroma, matrix degrading proteases may play an important role in pancreatic cancer. It has been suggested that matrix metalloproteases are key drivers of both tumor growth and metastasis during pancreatic cancer progression. Based upon this notion, changes in matrix metalloprotease expression levels are often considered surrogate markers for pancreatic cancer progression and/or treatment response. Indeed, reduced matrix metalloprotease levels upon treatment (either pharmacological or due to genetic ablation) are considered as proof of the anti-tumorigenic potential of the mediator under study. In the current review, we aim to establish whether matrix metalloproteases indeed drive pancreatic cancer progression and whether decreased matrix metalloprotease levels in experimental settings are therefore indicative of treatment response. After a systematic review of the studies focusing on matrix metalloproteases in pancreatic cancer, we conclude that the available literature is not as convincing as expected and that, although individual matrix metalloproteases may contribute to pancreatic cancer growth and metastasis, this does not support the generalized notion that matrix metalloproteases drive pancreatic ductal adenocarcinoma progression.
Collapse
Affiliation(s)
- Etienne J. Slapak
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - JanWillem Duitman
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| | - Cansu Tekin
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - C. Arnold Spek
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
6
|
Madamsetty VS, Pal K, Dutta SK, Wang E, Thompson JR, Banerjee RK, Caulfield TR, Mody K, Yen Y, Mukhopadhyay D, Huang HS. Design and Evaluation of PEGylated Liposomal Formulation of a Novel Multikinase Inhibitor for Enhanced Chemosensitivity and Inhibition of Metastatic Pancreatic Ductal Adenocarcinoma. Bioconjug Chem 2019; 30:2703-2713. [PMID: 31584260 DOI: 10.1021/acs.bioconjchem.9b00632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the highest mortality rates among cancers. Chemotherapy is the standard first-line treatment, but only modest survival benefits are observed. With the advent of targeted therapies, epidermal growth factor receptor (EGFR) has been acknowledged as a prospective target in PDAC since it is overexpressed in up to 60% of cases. Similarly, the tyrosine-protein kinase Met (cMET) is also overexpressed in PDAC (27-60%) and is a prognostic marker for poor survival. Interestingly, EGFR and cMET share some common signaling pathways including PI3K/Akt and MAPK pathways. Small molecule inhibitors or bispecific antibodies that can target both EGFR and cMET are therefore emerging as novel options for cancer therapy. We previously developed a dual EGFR and cMET inhibitor (N19) that was able to inhibit tumor growth in nonsmall cell lung cancer models resistant to EGFR tyrosine kinase inhibitors (TKI). Here, we report the development of a novel liposomal formulation of N19 (LN19) and showed significant growth inhibition and increased sensitivity toward gemcitabine in the pancreatic adenocarcinoma orthotopic xenograft model. Taken together, our results suggest that LN19 can be valued as an effective combination therapy with conventional chemotherapy such as gemcitabine for PDAC patients.
Collapse
Affiliation(s)
| | | | | | | | - James R Thompson
- SunMoon Research Partners Limited Liability Company , Jacksonville , Florida 32224 , United States
| | - Raj Kumar Banerjee
- Department of Applied Biology , CSIR-Indian Institute of Chemical Technology , Hyderabad , Telangana 500 007 , India
- CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus , Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad , Uttar Pradesh 201 002 , India
| | | | | | | | | | | |
Collapse
|
7
|
Clinicopathological significance and prognostic role of chemokine receptor CXCR4 expression in pancreatic ductal adenocarcinoma, a meta-analysis and literature review. Int J Surg 2019; 65:32-38. [DOI: 10.1016/j.ijsu.2019.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/12/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022]
|
8
|
Kim JH, Kim HS, Kim BJ, Lee J, Jang HJ. Prognostic value of c-Met overexpression in pancreatic adenocarcinoma: a meta-analysis. Oncotarget 2017; 8:73098-73104. [PMID: 29069852 PMCID: PMC5641195 DOI: 10.18632/oncotarget.20392] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/07/2017] [Indexed: 12/13/2022] Open
Abstract
The overexpression of c-Met protein has been detected in pancreatic adenocarcinoma (PAC). However, its prognostic impact remains unclear. We performed this meta-analysis to evaluate the prognostic value of c-Met overexpression in PAC. A systematic computerized search of the electronic databases such as PubMed, Embase, and Google Scholar was carried out. From 5 studies, 423 patients who underwent surgical resection for PAC were included in the meta-analysis. Compared with patients with PAC showing low c-Met expression, patients with c-Met-high tumor had significantly worse disease-free survival (hazard ratio = 1.94 [95% confidence interval, 1.46–2.56], P = 0.00001) and overall survival (hazard ratio = 1.86 [95% confidence interval, 1.19–2.91], P = 0.006). In conclusion, this meta-analysis demonstrates that c-Met overexpression is a significant prognostic marker for poor survival in patients who underwent surgical resection for PAC.
Collapse
Affiliation(s)
- Jung Han Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Hyeong Su Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Bum Jun Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea.,Department of Internal Medicine, National Army Capital Hospital, The Armed Forces Medical Command, Sungnam 13574, Republic of Korea
| | - Jin Lee
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Hwasung 18450, Republic of Korea
| | - Hyun Joo Jang
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Hwasung 18450, Republic of Korea
| |
Collapse
|
9
|
Sleightholm RL, Neilsen BK, Li J, Steele MM, Singh RK, Hollingsworth MA, Oupicky D. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Ther 2017; 179:158-170. [PMID: 28549596 DOI: 10.1016/j.pharmthera.2017.05.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemokine networks regulate a variety of cellular, physiological, and immune processes. These normal functions can become appropriated by cancer cells to facilitate a more hospitable niche for aberrant cells by enhancing growth, proliferation, and metastasis. This is especially true in pancreatic cancer, where chemokine signaling is a vital component in the development of the supportive tumor microenvironment and the signaling between the cancer cells and surrounding stromal cells. Although expression patterns vary among cancer types, the chemokine receptor CXCR4 has been implicated in nearly every major malignancy and plays a prominent role in pancreatic cancer development and progression. This receptor, in conjunction with its primary chemokine ligand CXCL12, promotes pancreatic cancer development, invasion, and metastasis through the management of the tumor microenvironment via complex crosstalk with other pathways. Thus, CXCR4 likely contributes to the poor prognoses observed in patients afflicted with this malignancy. Recent exploration of combination therapies with CXCR4 antagonists have demonstrated improved outcomes, and abolishing the contribution of this pathway may prove crucial to effectively treat pancreatic cancer at both the primary tumor and metastases.
Collapse
Affiliation(s)
- Richard L Sleightholm
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Beth K Neilsen
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Jing Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - David Oupicky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
10
|
Systematic review of peri-operative prognostic biomarkers in pancreatic ductal adenocarcinoma. HPB (Oxford) 2016; 18:652-63. [PMID: 27485059 PMCID: PMC4972371 DOI: 10.1016/j.hpb.2016.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) continues to be associated with a poor prognosis. This systematic review aimed to summarize the literature regarding potential prognostic biomarkers to facilitate validation studies and clinical application. METHODS A systematic review was performed (2004-2014) according to PRISMA guidelines. Studies were ranked using REMARK criteria and the following outcomes were examined: overall/disease free survival, nodal involvement, tumour characteristics, metastasis, recurrence and resectability. RESULTS 256 biomarkers were identified in 158 studies. 171 biomarkers were assessed with respect to overall survival: urokinase-type plasminogen activator receptor, atypical protein kinase C and HSP27 ranked the highest. 33 biomarkers were assessed for disease free survival: CD24 and S100A4 were the highest ranking. 17 biomarkers were identified for lymph node involvement: Smad4/Dpc4 and FOXC1 ranked highest. 13 biomarkers were examined for tumour grade: mesothelin and EGFR were the highest ranking biomarkers. 10 biomarkers were identified for metastasis: p16 and sCD40L were the highest ranking. 4 biomarkers were assessed resectability: sCD40L, s100a2, Ca 19-9, CEA. CONCLUSION This review has identified and ranked specific biomarkers that should be a primary focus of ongoing validation and clinical translational work in PDAC.
Collapse
|
11
|
Wang L, Wu H, Wang L, Lu J, Duan H, Liu X, Liang Z. Expression of amphiregulin predicts poor outcome in patients with pancreatic ductal adenocarcinoma. Diagn Pathol 2016; 11:60. [PMID: 27391842 PMCID: PMC4938900 DOI: 10.1186/s13000-016-0512-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/02/2016] [Indexed: 11/24/2022] Open
Abstract
Background The validation of novel diagnostic, prognostic and predictive biomarkers in cancer is crucial for optimizing the choice and efficacy of personalized therapies. The aim of this study was to determine the epidermal growth factor receptor (EGFR), epidermal growth factor receptor variant III (EGFRvIII) and amphiregulin (AREG) protein expression levels and to evaluate the prognostic significance of EGFR, EGFRvIII and AREG in pancreatic ductal adenocarcinoma (PDAC). Methods The EGFR, EGFRvIII and AREG protein levels in PDAC (n = 92) were examined by using immunohistochemistry. The associations between EGFRvIII expression, AREG expression, AREG/EGFR co-expression and clinicopathological factors were assessed, the correlation between AREG and EGFR expression was analyzed and the survival analyses were performed. Results Among the lesions of PDAC, 12 (13 %) stained positive for EGFRvIII, 49 (53.3 %) stained positive for AREG and 22(23.9 %) stained double positive for AREG/EGFR. The relationships between each protein expression level and the clinicopathologic factors were examined, only AREG/EGFR co-expression was significantly related to tumor differentiation (P = 0.032). The correlation between AREG and EGFR expression was statistically insignificant (P = 0.709). Univariate survival analysis proved that high tumor-node-metastasis (TNM) stage, poor tumor differentiation and AREG expression were significant poor prognostic factors for disease-free survival (DFS) and overall survival (OS). By multivariate survival analysis, tumor differentiation was an independent poor prognostic factor for DFS (HR = 1.785, P < 0.05), whereas high TNM stage (HR = 2.25, P < 0.05), poor tumor differentiation (HR = 2.125, P < 0.01), positive resection margins (HR = 1.84, P < 0.05), and AREG expression (HR = 1.822, P < 0.05) were all independent poor prognostic factors for OS. Conclusions In conclusion, our data indicate that AREG expression is an important prognostic biomarker in PDAC . Electronic supplementary material The online version of this article (doi:10.1186/s13000-016-0512-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Wang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Huanwen Wu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Lili Wang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Junliang Lu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Huanli Duan
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Xuguang Liu
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Zhiyong Liang
- Molecular Pathology Research Center, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.
| |
Collapse
|
12
|
Krieg A, Riemer JC, Telan LA, Gabbert HE, Knoefel WT. CXCR4--A Prognostic and Clinicopathological Biomarker for Pancreatic Ductal Adenocarcinoma: A Meta-Analysis. PLoS One 2015; 10:e0130192. [PMID: 26091099 PMCID: PMC4474597 DOI: 10.1371/journal.pone.0130192] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/18/2015] [Indexed: 12/31/2022] Open
Abstract
Adenocarcinomas of the pancreatic duct (PDAC) are characteristically aggressive tumors that are extremely challenging to treat as curative surgical resection, the definitive treatment, is seldom possible. Regretably, most patients are diagnosed with metastatic disease at the time of initial presentation. In addition, current chemotherapeutic concepts that are used for advanced disease stages show frustrating results. Thus, there is an urgent need to identify novel therapeutic molecular targets that are associated with PDAC disease. Recently, the chemokine receptor CXCR4 has been demonstrated to be highly expressed in metastatic PDAC. However, the results of the published data on CXCR4 and its association with clinicopathological variables and prognosis in PDAC seem to be heterogeneous. Consequently, to clarify the relevance of CXCR4 as a biomarker in PDAC we performed a comprehensive literature search by using PubMed and Web of Science databases to identify articles that focused on the expression of CXCR4 in PDAC by using immunohistochemistry. Subsequently, data from nine relevant studies, encompassing 1183 patients were extracted, qualitatively assessed, and entered into a meta-analysis. By using a random effects model, the pooled hazard ratio of the seven studies that reported on patients overall survival revealed a correlation between expression of CXCR4 and poor prognosis (HR 1.49; 95% CI: 1.04-2.14; P = 0.03; I2 = 74%). Although heterogeneity became evident, subgroup analyses confirmed the prognostic value of CXCR4 in PDAC, especially in high-quality studies that performed multivariate analysis. In addition, meta-analysis revealed a strong association of CXCR4 expression with the UICC stage (OR: 3.40; 95% CI: 1.67-6.92; P = 0.0007; I2 = 0%) and metastatic disease (N-status: OR: 2.55; 95% CI: 1.56-4.15; P = 0.0002; I2 = 26%; recurrence to the liver: OR: 2.80; 95% CI: 1.48-5.29; P = 0.001; I2 = 0%). Taken together, our meta-analysis suggests that CXCR4 represents a useful prognostic biomarker in PDAC and might therefore be evaluated as a potential therapeutic target in the treatment of metastatic cancer disease of the pancreas.
Collapse
Affiliation(s)
- Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
- * E-mail:
| | - Jasmin C. Riemer
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Leila A. Telan
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Helmut E. Gabbert
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Wolfram T. Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
13
|
Neuzillet C, Couvelard A, Tijeras-Raballand A, de Mestier L, de Gramont A, Bédossa P, Paradis V, Sauvanet A, Bachet JB, Ruszniewski P, Raymond E, Hammel P, Cros J. High c-Met expression in stage I-II pancreatic adenocarcinoma: proposal for an immunostaining scoring method and correlation with poor prognosis. Histopathology 2015; 67:664-76. [PMID: 25809563 DOI: 10.1111/his.12691] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/14/2015] [Indexed: 12/11/2022]
Abstract
AIMS c-Met is an emerging biomarker in pancreatic ductal adenocarcinoma (PDAC); there is no consensus regarding the immunostaining scoring method for this marker. We aimed to assess the prognostic value of c-Met overexpression in resected PDAC, and to elaborate a robust and reproducible scoring method for c-Met immunostaining in this setting. METHODS AND RESULTS c-Met immunostaining was graded according to the validated MetMab score, a classic visual scale combining surface and intensity (SI score), or a simplified score (high c-Met: ≥ 20% of tumour cells with strong membranous staining), in stage I-II PDAC. A computer-assisted classification method (Aperio software) was developed. Clinicopathological parameters were correlated with disease-free survival (DFS) and overall survival(OS). One hundred and forty-nine patients were analysed retrospectively in a two-step process. Thirty-seven samples (whole slides) were analysed as a pre-run test. Reproducibility values were optimal with the simplified score (kappa = 0.773); high c-Met expression (7/37) was associated with shorter DFS [hazard ratio (HR) 3.456, P = 0.0036] and OS (HR 4.257, P = 0.0004). c-Met expression was concordant on whole slides and tissue microarrays in 87.9% of samples, and quantifiable with a specific computer-assisted algorithm. In the whole cohort (n = 131), patients with c-Met(high) tumours (36/131) had significantly shorter DFS (9.3 versus 20.0 months, HR 2.165, P = 0.0005) and OS (18.2 versus 35.0 months, HR 1.832, P = 0.0098) in univariate and multivariate analysis. CONCLUSIONS Simplified c-Met expression is an independent prognostic marker in stage I-II PDAC that may help to identify patients with a high risk of tumour relapse and poor survival.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM UMR1149.,Department of Digestive Oncology, Beaujon University Hospital, Clichy, France.,Paris 7 Denis Diderot University, Paris, France
| | - Anne Couvelard
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Pathology, Bichat-Beaujon University Hospital, Paris-Clichy, France
| | | | | | - Armand de Gramont
- Department of Medical Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre Bédossa
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Pathology, Bichat-Beaujon University Hospital, Paris-Clichy, France
| | - Valérie Paradis
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Pathology, Bichat-Beaujon University Hospital, Paris-Clichy, France
| | - Alain Sauvanet
- Paris 7 Denis Diderot University, Paris, France.,Department of Biliary and Pancreatic Surgery, Beaujon University Hospital, Clichy, France
| | - Jean-Baptiste Bachet
- Department of Gastroenterology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Philippe Ruszniewski
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Gastroenterology and Pancreatology, Beaujon University Hospital, Clichy, France
| | - Eric Raymond
- Department of Medical Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pascal Hammel
- INSERM UMR1149.,Department of Digestive Oncology, Beaujon University Hospital, Clichy, France.,Paris 7 Denis Diderot University, Paris, France
| | - Jérôme Cros
- INSERM UMR1149.,Paris 7 Denis Diderot University, Paris, France.,Department of Pathology, Bichat-Beaujon University Hospital, Paris-Clichy, France
| |
Collapse
|
14
|
Targeting cMET with INC280 impairs tumour growth and improves efficacy of gemcitabine in a pancreatic cancer model. BMC Cancer 2015; 15:71. [PMID: 25884642 PMCID: PMC4340491 DOI: 10.1186/s12885-015-1064-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Expression and activation of the cMET receptor have been implicated in tumor progression and resistance to chemotherapy in human pancreatic cancer. In this regard we assessed the effects of targeting cMET in pancreatic cancer models in vitro and in vivo. METHODS Human (L3.6pl, BxP3, HPAF-II, MiaPaCa2) and murine (Panc02) pancreatic cancer cell lines, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) were used for the experiments. Furthermore, the human pancreatic cancer cell line MiaPaCa2 with acquired resistance to gemcitabine was employed (MiaPaCa2(G250)). For targeting the cMET receptor, the oral available, ATP-competitive inhibitor INC280 was used. Effects of cMET inhibition on cancer and stromal cells were determined by growth assays, western blotting, motility assays and ELISA. Moreover, orthotopic xenogeneic and syngeneic mouse (BALB-C nu/nu; C57BL/6) models were used to assess in vivo efficacy of targeting cMET alone and in combination with gemcitabine. RESULTS Treatment with INC280 impairs activation of signaling intermediates in pancreatic cancer cells and ECs, particularly when cells were stimulated with hepatocyte growth factor (HGF). Moreover, motility of cancer cells and ECs in response to HGF was reduced upon treatment with INC280. Only minor effects on VSMCs were detected. Interestingly, MiaPaCa2(G250) showed an increase in cMET expression and cMET inhibition abrogated HGF-induced effects on growth, motility and signaling as well as DFX-hypoxia HIF-1alpha and MDR-1 expression in vitro. In vivo, therapy with INC280 alone led to inhibition of orthotopic tumor growth in xenogeneic and syngeneic models. Similar to in vitro results, cMET expression was increased upon treatment with gemcitabine, and combination of the cMET inhibitor with gemcitabine improved anti-neoplastic capacity in an orthotopic syngeneic model. Immunohistochemical analysis revealed a significant inhibition of tumor cell proliferation (Ki67) and tumor vascularization (CD31). Finally, combination of gemcitabine with INC280 significantly prolonged survival in the orthotopic syngeneic tumor model even when treatment with the cMET inhibitor was initiated at an advanced stage of disease. CONCLUSIONS These data provide evidence that targeting cMET in combination with gemcitabine may be effective in human pancreatic cancer and warrants further clinical evaluation.
Collapse
|
15
|
Abstract
BACKGROUND Recent studies have shown the clinical significance of epidermal growth factor-like domain 7 (EGFL7) in a variety of cancers. However, the relationship between EGFL7 and the prognosis of pancreatic cancer (PC) remains unclear. The present study was undertaken to investigate the role of EGFL7 in the prognosis of PC. METHODS The expression of EGFL7 in nine PC cell lines was first determined by Western blotting analysis. Tissue microarray-based immunohistochemical staining was performed in paired formalin-fixed paraffin-embedded tumor and non-tumor samples from 83 patients with PC. Finally, correlations between EGFL7 expression and clinicopathological variables as well as overall survival were evaluated. RESULTS EGFL7 was widely expressed in all PC cell lines tested. EGFL7 expression in tumor tissues was significantly higher than that in non-tumor tissues (P=0.040). In addition, univariate analysis revealed that high EGFL7 expression in tumor tissues was significantly associated with poor overall survival, accompanied by several conventional clinicopathological variables, such as gender, histological grade and lymph node metastasis. In a multivariate Cox regression test, EGFL7 expression was identified as an independent marker for long-term outcome of PC. CONCLUSION Our data showed that EGFL7 is extensively expressed in PC and that EGFL7 is associated with poor prognosis.
Collapse
|
16
|
Mikhitarian K, Pollen M, Zhao Z, Shyr Y, Merchant N, Parikh A, Revetta F, Washington K, Vnencak-Jones C, Shi C. Epidermal growth factor receptor signaling pathway is frequently altered in ampullary carcinoma at protein and genetic levels. Mod Pathol 2014; 27:665-74. [PMID: 24186143 PMCID: PMC4007414 DOI: 10.1038/modpathol.2013.185] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 02/06/2023]
Abstract
Our objective was to explore alteration of the epidermal growth factor receptor (EGFR) signaling pathway in ampullary carcinoma. Immunohistochemical studies were employed to evaluate expression of amphiregulin as well as expression and activation of EGFR. A lab-developed assay was used to identify mutations in the EGFR pathway genes, including KRAS, BRAF, PIK3CA, PTEN, and AKT1. A total of 52 ampullary carcinomas were identified, including 25 intestinal-type and 24 pancreatobiliary-type tumors, with the intestinal type being associated with a younger age at diagnosis (P=0.03) and a better prognosis (P<0.01). Expression of amphiregulin correlated with better differentiation (P<0.01), but no difference was observed between two major histologic types. Expression and activation of EGFR was more commonly seen in the pancreatobiliary type (P<0.01). Mutations were detected in 50% of the pancreatobiliary type and 60% of the intestinal type. KRAS was the most common gene mutated in the pancreatobiliary type (42%) as well as the intestinal type (52%). Other mutations detected included PIK3CA, SMAD4 and BRAF. KRAS mutations at codons 12 and 13 did not adversely affect overall survival. In conclusion, EGFR expression and activation were different between intestinal- and pancreatobiliary-type ampullary carcinoma. KRAS mutation was common in both histologic types; however, the incidence appeared to be lower in the pancreatobiliary type compared with its pancreatic counterpart, pancreatic ductal adenocarcinoma. Mutational analysis of the EGFR pathway genes may provide important insights into personalized treatment for patients with ampullary carcinoma.
Collapse
Affiliation(s)
- Kaidi Mikhitarian
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Maressa Pollen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Zhiguo Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Nipun Merchant
- Department of Surgery, Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Alexander Parikh
- Department of Surgery, Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Frank Revetta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Cindy Vnencak-Jones
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Chanjuan Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
17
|
Avan A, Caretti V, Funel N, Galvani E, Maftouh M, Honeywell RJ, Lagerweij T, Van Tellingen O, Campani D, Fuchs D, Verheul HM, Schuurhuis GJ, Boggi U, Peters GJ, Würdinger T, Giovannetti E. Crizotinib inhibits metabolic inactivation of gemcitabine in c-Met-driven pancreatic carcinoma. Cancer Res 2013; 73:6745-56. [PMID: 24085787 DOI: 10.1158/0008-5472.can-13-0837] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a major unsolved health problem. Most drugs that pass preclinical tests fail in these patients, emphasizing the need of improved preclinical models to test novel anticancer strategies. Here, we developed four orthotopic mouse models using primary human PDAC cells genetically engineered to express firefly- and Gaussia luciferase, simplifying the ability to monitor tumor growth and metastasis longitudinally in individual animals with MRI and high-frequency ultrasound. In these models, we conducted detailed histopathologic and immunohistochemical analyses on paraffin-embedded pancreatic tissues and metastatic lesions in liver, lungs, and lymph nodes. Genetic characteristics were compared with the originator tumor and primary tumor cells using array-based comparative genomic hybridization, using frozen specimens obtained by laser microdissection. Notably, the orthotopic human xenografts in these models recapitulated the phenotype of human PDACs, including hypovascular and hypoxic areas. Pursuing genomic and immunohistochemical evidence revealed an increased copy number and overexpression of c-Met in one of the models; we examined the preclinical efficacy of c-Met inhibitors in vitro and in vivo. In particular, we found that crizotinib decreased tumor dimension, prolonged survival, and increased blood and tissue concentrations of gemcitabine, synergizing with a cytidine deaminase-mediated mechanism of action. Together, these more readily imaged orthotopic PDAC models displayed genetic, histopathologic, and metastatic features similar to their human tumors of origin. Moreover, their use pointed to c-Met as a candidate therapeutic target in PDAC and highlighted crizotinib and gemcitabine as a synergistic combination of drugs warranting clinical evaluation for PDAC treatment.
Collapse
Affiliation(s)
- Amir Avan
- Authors' Affiliations: Departments of Medical Oncology, Hematology, Neurosurgery and Pediatric Oncology/Hematology, Neuro-oncology Research Group, VU University Medical Center; Diagnostic Oncology Division, Netherlands Cancer Institute; VisualSonics, Amsterdam, the Netherlands; Departments of Neurology and Pediatrics, Stanford University School of Medicine, Stanford, California; Division of Surgical Pathology, Division of General and Transplant Surgery, University of Pisa, Pisa, Italy; and Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang HT, Guo HF, Tan XD, Zhang J, Li HS, Yang YF, Wang ZP, Sun Y, Zhang XB. Involvement of plasminogen cascade proteins in the invasion of pancreatic cancer cells. Shijie Huaren Xiaohua Zazhi 2013; 21:2258-2266. [DOI: 10.11569/wcjd.v21.i23.2258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To discuss the potential role of plasminogen cascade proteins in the dissociation and subsequent invasion of pancreatic cancer cells.
METHODS: The expression of plasminogen, urokinase type plasminogen activator (uPA) and uPA receptor (uPAR) was detected by Western blot and immunocytochemistry in cell lines and by immunohistochemistry in tissue samples of pancreatic cancer. The correlation between expression of plasminogen cascade proteins and cell dissociation and invasion was analyzed.
RESULTS: Plasminogen, uPA and uPAR were strongly expressed in conditioned medium of dissociated pancreatic cancer cells (PC-1.0), but weakly expressed in conditioned medium of non-dissociated pancreatic cancer cells (PC-1). uPA treatment significantly induced the expression of plasminogen and uPAR in conditioned medium of non-dissociated pancreatic cancer cells (PC-1). Stronger expression of plasminogen and uPAR was observed at the invasive front end than at the center of human pancreatic cancer tissue. Plasmin treatment induced matrix metalloproteinase-2 (MMP-2), MMP-7 and MMP-9 expression in PC-1 cells. Treatment with plasmin or uPA obviously induced invasiveness and dissociation of cell colonies in PC-1 cells.
CONCLUSION: The plasminogen cascade is involved in cell dissociation in the early stage of invasion of pancreatic cancer cells. The plasminogen cascade may be a potential molecular target for anti-invasion and anti-metastasis therapy for pancreatic cancer.
Collapse
|