1
|
Malla RR, Nellipudi HR, Srilatha M, Nagaraju GP. HER-2 positive gastric cancer: Current targeted treatments. Int J Biol Macromol 2024; 274:133247. [PMID: 38906351 DOI: 10.1016/j.ijbiomac.2024.133247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Gastric cancer (GC) is highly metastatic and characterized by HER2 amplification. Aberrant HER2 expression drives metastasis, therapy resistance, and tumor recurrence. HER2 amplification contributes to drug resistance by upregulating DNA repair enzymes and drug afflux proteins, reducing drug efficacy. HER2 modulates transcription factors critical for cancer stem cell properties, further impacting drug resistance. HER2 activity is influenced by HER-family ligands, promoting oncogenic signaling. These features point to HER2 as a targetable driver in GC. This review outlines recent advances in HER2-mediated mechanisms and their upstream and downstream signaling pathways in GC. Additionally, it discusses preclinical research investigation that comprehends trastuzumab-sensitizing phytochemicals, chemotherapeutics, and nanoparticles as adjunct therapies. These developments hold promise for improving outcomes and enhancing the management of HER2-positive GC.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, AP 530045, India
| | | | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, AP, India
| | | |
Collapse
|
2
|
Deng Y, Cai S, Shen J, Peng H. Tetraspanins: Novel Molecular Regulators of Gastric Cancer. Front Oncol 2021; 11:702510. [PMID: 34222025 PMCID: PMC8250138 DOI: 10.3389/fonc.2021.702510] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is the fourth and fifth most common cancer worldwide in men and women, respectively. However, patients with an advanced stage of gastric cancer still have a poor prognosis and low overall survival rate. The tetraspanins belong to a protein superfamily with four hydrophobic transmembrane domains and 33 mammalian tetraspanins are ubiquitously distributed in various cells and tissues. They interact with other membrane proteins to form tetraspanin-enriched microdomains and serve a variety of functions including cell adhesion, invasion, motility, cell fusion, virus infection, and signal transduction. In this review, we summarize multiple utilities of tetraspanins in the progression of gastric cancer and the underlying molecular mechanisms. In general, the expression of TSPAN8, CD151, TSPAN1, and TSPAN4 is increased in gastric cancer tissues and enhance the proliferation and invasion of gastric cancer cells, while CD81, CD82, TSPAN5, TSPAN9, and TSPAN21 are downregulated and suppress gastric cancer cell growth. In terms of cell motility regulation, CD9, CD63 and CD82 are metastasis suppressors and the expression level is inversely associated with lymph node metastasis. We also review the clinicopathological significance of tetraspanins in gastric cancer including therapeutic targets, the development of drug resistance and prognosis prediction. Finally, we discuss the potential clinical value and current limitations of tetraspanins in gastric cancer treatments, and provide some guidance for future research.
Collapse
Affiliation(s)
- Yue Deng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sicheng Cai
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Shen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiming Peng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Yang T, Wang H, Li M, Yang L, Han Y, Liu C, Zhang B, Wu M, Wang G, Zhang Z, Zhang W, Huang J, Zhang H, Cao T, Chen P, Zhang W. CD151 promotes Colorectal Cancer progression by a crosstalk involving CEACAM6, LGR5 and Wnt signaling via TGFβ1. Int J Biol Sci 2021; 17:848-860. [PMID: 33767593 PMCID: PMC7975690 DOI: 10.7150/ijbs.53657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/03/2021] [Indexed: 01/28/2023] Open
Abstract
CD151 impacts various signaling pathways in different cancers, and promotes colorectal cancer (CRC) cell malignancy by yet undefined mechanisms. This study aimed to comprehensively assess CD151's function in CRC. CD151 levels were significantly higher in CRC tissues and cells compared with controls in the tissue microarray. Cell viability, migration and invasion were suppressed by CD151 downregulation in CRC cells. Consistently, mouse xenografts were inhibited by CD151 silencing. RNA-seq revealed that multiple genes were significantly altered by CD151 knockdown in cultured CRC cells and xenografts. Particularly, transforming growth factor β1 (TGFβ1), carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) and leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) alongside CD151 were downregulated both in vitro and in vivo. Co-immunoprecipitation and mass spectrometry results were validated by qRT-PCR and immunoblot. Moreover, pull-down assay and immunofluorescence confirmed the associations of TGFβ1, CEACAM6 and LGR5 with CD151. This study demonstrated CEACAM6, LGR5 and Wnt pathway suppression by CD151 silencing might occur through TGFβ1 regulation, offering a comprehensive view of CD151's roles in colorectal carcinogenesis. Our findings provide an insight into the CD151-involved signaling network in CRC oncogenesis, which could be utilized to design novel targeted therapies against CD151-based signaling in treatment for CRC.
Collapse
Affiliation(s)
- Tao Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Huibing Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Meng Li
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Linqi Yang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yu Han
- Department of Pharmacy, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Chao Liu
- Department of Laboratory Animal Science, Hebei Key Lab of Hebei Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Baowen Zhang
- Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Moleculor and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Mingfa Wu
- Department of Gastrointestinal Surgery, Dingzhou City People's Hospital, Dingzhou, Hebei, 073000, China
| | - Gang Wang
- Department of Third General Surgery, Cangzhou City People's Hospital, Cangzhou, Hebei, 061000, China
| | - Zhenya Zhang
- Department of Second General Surgery, Hebei Medical University Fourth hospital, Shijiazhuang, Hebei, 050011, China
| | - Wenqi Zhang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, 500017, China
| | - Jianming Huang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Huaxing Zhang
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Ting Cao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Pingping Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Wei Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| |
Collapse
|
4
|
Wong AH, Tran T. CD151 in Respiratory Diseases. Front Cell Dev Biol 2020; 8:64. [PMID: 32117989 PMCID: PMC7020194 DOI: 10.3389/fcell.2020.00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/22/2020] [Indexed: 12/25/2022] Open
Abstract
The tetraspanin, Cluster of Differentiation 151 (CD151), is ubiquitously expressed in adult tissue, especially in the lungs where it has been implicated in lung cancer, asthma, influenza, and idiopathic pulmonary fibrosis (IPF). CD151 interacts with laminin-binding integrins and growth factor receptors, and is reported in cancer-promoting processes such as tumor initiation, metastasis, and angiogenesis. In asthma, CD151 was shown to promote airways hyperresponsiveness through calcium signaling whereas in influenza, CD151 was shown to be a novel host factor for nuclear viral export signaling. Furthermore, CD151 was shown to be associated with increased disease severity and poorer survival outcome in asthma and lung cancer, respectively. In this review, we provide an update on the current understanding of CD151 with regards to its contribution to lung pathophysiology. We also summarize factors that have been shown to regulate CD151 expression and identify key areas that need to be taken into consideration for its utility as a screening or prognostic tool in disease management and/or as a therapeutic target for the treatment of lung diseases.
Collapse
Affiliation(s)
- Amanda H Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Yunusova NV, Tugutova EA, Tamkovich SN, Kondakova IV. [The role of exosomal tetraspanins and proteases in tumor progression]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:123-133. [PMID: 29723143 DOI: 10.18097/pbmc20186402123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Major (CD9, CD63, CD81) and others (CD82, CD151, Tspan8) tetraspanins are widely represented in exosomes, where they interact with various proteins and form functional tetraspanin complexes. Tetraspanin complexes include proteases. Tetraspanin-associated exosomal proteases (ADAM proteases, MMPs, EMMPRIN) play an important role in the processes of cell motility, migration, invasion and formation of metastases. Also, a significant contribution to tumor progression is made by proteases that are not associated with tetraspanins. They destabilize intercellular contacts, promote migration and invasion of tumor cells, participate in the regulation of the expression IGF-I, VEGF and transcription factors activation/deactivation. The role of other proteases of exosomes in the processes of tumor progression is being clarified.
Collapse
Affiliation(s)
- N V Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| | - E A Tugutova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - S N Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia; Novosibirsk State Medical University, Novosibirsk, Russia
| | - I V Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
6
|
Zeng P, Wang YH, Si M, Gu JH, Li P, Lu PH, Chen MB. Tetraspanin CD151 as an emerging potential poor prognostic factor across solid tumors: a systematic review and meta-analysis. Oncotarget 2018; 8:5592-5602. [PMID: 27888619 PMCID: PMC5354932 DOI: 10.18632/oncotarget.13532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/02/2016] [Indexed: 02/01/2023] Open
Abstract
Tetraspanin CD151, also known as PETA-3 or SFA-1, has been reported to predict prognosis in various solid tumors. Yet, the results of these studies remained inconclusive. Here, we performed this meta-analysis of relevant studies published on the topic to quantitatively evaluate the clinicopathological significance of CD151 in solid tumors. The relevant articles were identified via searching the PubMed, Web of Science and Embase database. The pooled hazard ratios (HRs) and corresponding 95% confidence intervals (CI) of overall survival (OS) and disease-free survival (DFS) were calculated to evaluate the prognostic value of CD151 expression in patients with solid tumors. A total of 19 studies involving 4, 270 participants were included in the study, we drew the conclusion that CD151 overexpression was associated with statistically significant poor OS (pooled HR = 1.498, 95% CI = 1.346-1.667, P<0.001) and poor DFS (pooled HR = 1.488, 95% CI = 1.314-1.685, P<0.001). Furthermore, the subgroup analysis revealed that the associations between CD151 overexpression and the outcome endpoints (OS or TTP) were significant within the Asian region and European, as well in patients with breast cancer or gastric cancer. Taken together, the incorporative HR showed CD151 overexpression was associated with poor survival in human solid tumors. CD151 could be a valuable prognosis biomarker or a potential therapeutic target of solid tumors.
Collapse
Affiliation(s)
- Ping Zeng
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Yin-Hua Wang
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China.,Department of Oncology, Changshu Second People's Hospital Affiliated to Yangzhou University, Changshu 215500, Jiangsu Province, China
| | - Meng Si
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Ping Li
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Pei-Hua Lu
- Department of Medical Oncology, Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| |
Collapse
|
7
|
Kim SM. Cellular and Molecular Mechanisms of 3,3'-Diindolylmethane in Gastrointestinal Cancer. Int J Mol Sci 2016; 17:ijms17071155. [PMID: 27447608 PMCID: PMC4964527 DOI: 10.3390/ijms17071155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022] Open
Abstract
Studies in humans have shown that 3,3′-diindolylmethane (DIM), which is found in cruciferous vegetables, such as cabbage and broccoli, is effective in the attenuation of gastrointestinal cancers. This review presents the latest findings on the use, targets, and modes of action of DIM for the treatment of human gastrointestinal cancers. DIM acts upon several cellular and molecular processes in gastrointestinal cancer cells, including apoptosis, autophagy, invasion, cell cycle regulation, metastasis, angiogenesis, and endoplasmic reticulum (ER) stress. In addition, DIM increases the efficacy of other drugs or therapeutic chemicals when used in combinatorial treatment for gastrointestinal cancer. The studies to date offer strong evidence to support the use of DIM as an anticancer and therapeutic agent for gastrointestinal cancer. Therefore, this review provides a comprehensive understanding of the preventive and therapeutic properties of DIM in addition to its different perspective on the safety of DIM in clinical applications for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Soo Mi Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 561-180, Korea.
| |
Collapse
|
8
|
Sheng X, Liu HS, Shen JY, Feng W, Qin JM. Relationship between expression of CD151 and Integrin α6 and epithelial-mesenchymal transition in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:852-856. [DOI: 10.11569/wcjd.v23.i5.852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between CD151 and Integrin α6 expression and clinicopathological parameters in colorectal cancer, and analyze the role of the two proteins in epithelial-mesenchymal transition (EMT).
METHODS: Immunohistochemistry was performed to detect the expression of CD151, Integrin α6, E-cadherin and Vimentin in 132 colorectal cancer specimens using tissue microarray.
RESULTS: The positive rates of CD151 and Integrin α6 in colorectal cancer tissues were 65.9% and 75.7%, respectively, significantly higher than those in tumor-adjacent normal tissues. CD151 and Integrin α6 expression was closely related with the depth of invasion and lymph lode metastasis, while the expression of CD151 was closely associated with low E-cadherin expression and high Vimentin expression.
CONCLUSION: CD151 may accelerate the invasion and metastasis of colorectal cancer by promoting EMT.
Collapse
|
9
|
Garai J, Uddo RB, Mohler MC, Pelligrino N, Scribner R, Sothern MS, Zabaleta J. At the crossroad between obesity and gastric cancer. Methods Mol Biol 2015; 1238:689-707. [PMID: 25421687 DOI: 10.1007/978-1-4939-1804-1_36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Obesity has reached epidemic proportions worldwide with disproportionate prevalence in different communities and ethnic groups. Recently, the American Medical Association recognized obesity as a disease, which is a significant milestone that opens the possibilities of treating obesity under standardized health plans. Obesity is an inflammatory disease characterized by elevated levels of biomarkers associated with abnormal lipid profiles, glucose levels, and blood pressure that lead to the onset of metabolic syndrome. Interestingly, inflammatory biomarkers, in particular, have been implicated in the risk of developing several types of cancer. Likewise, obesity has been linked to esophageal, breast, gallbladder, kidney, pancreatic, and colorectal cancers. Thus, there exists a link between obesity status and tumor appearance, which may be associated to the differential levels and the circulating profiles of several inflammatory molecules. For example, mediators of the inflammatory responses in both obesity and gastric cancer risk are the same: pro-inflammatory molecules produced by the activated cells infiltrating the inflamed tissues. These molecules trigger pathways of activation shared by obesity and cancer. Therefore, understanding how these different pathways are modulated would help reduce the impact that both diseases, and their concomitant existence, have on society.
Collapse
Affiliation(s)
- Jone Garai
- Stanley S. Scott Cancer Center, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Matsumoto N, Morine Y, Utsunomiya T, Imura S, Ikemoto T, Arakawa Y, Iwahashi S, Saito Y, Yamada S, Ishikawa D, Takasu C, Miyake H, Shimada M. Role of CD151 expression in gallbladder carcinoma. Surgery 2014; 156:1212-7. [PMID: 24890568 DOI: 10.1016/j.surg.2014.04.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/24/2014] [Indexed: 12/12/2022]
|