1
|
Lynch IT, Abdelrahman AM, Alva-Ruiz R, Fogliati A, Graham RP, Smoot R, Truty MJ. Cancer "Avatars": Patient-Derived Xenograft Growth Correlation with Postoperative Recurrence and Survival in Pancreaticobiliary Cancer. J Am Coll Surg 2023; 237:483-500. [PMID: 37326316 PMCID: PMC10417234 DOI: 10.1097/xcs.0000000000000786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pancreaticobiliary (PB) cancers are a diverse group of cancers with poor prognoses and high rates of recurrence after resection. Patient-derived xenografts (PDX), created from surgical specimens, provide a reliable preclinical research platform and high-fidelity cancer model from which to study these malignancies with consistent recapitulation of their original patient tumors in vivo. However, the relationship between PDX engraftment success (growth or no growth) and patient oncologic outcomes has not been well studied. We sought to evaluate the correlation between successful PDX engraftment and survival in several PB exocrine carcinomas, including the pancreatic and biliary tract. STUDY DESIGN In accordance with IRB and Institutional Animal Care and Use Committee protocols and with appropriate consent and approval, excess tumor tissue obtained from surgical patients was implanted into immunocompromised mice. Mice were monitored for tumor growth to determine engraftment success. PDX tumors were verified to recapitulate their tumors of origin by a hepatobiliary pathologist. Xenograft growth was correlated with clinical recurrence and overall survival data. RESULTS A total of 384 PB xenografts were implanted. The successful engraftment rate was 41% (158/384). We found that successful PDX engraftment was highly associated with both recurrence-free survival (p < 0.001) and overall survival (p < 0.001) outcomes. Successful PDX tumor generation occurs significantly in advance of clinical recurrences in their corresponding patients (p < 0.001). CONCLUSIONS Successful PB cancer PDX models predict recurrence and survival across tumor types and may provide critical lead time to alter patients' surveillance or treatment plans before cancer recurrence.
Collapse
Affiliation(s)
- Isaac T Lynch
- From the Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN (Lynch, Abdelrahman, Alva-Ruiz, Fogliati, Smoot, Truty)
| | - Amro M Abdelrahman
- From the Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN (Lynch, Abdelrahman, Alva-Ruiz, Fogliati, Smoot, Truty)
| | - Roberto Alva-Ruiz
- From the Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN (Lynch, Abdelrahman, Alva-Ruiz, Fogliati, Smoot, Truty)
| | - Alessandro Fogliati
- From the Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN (Lynch, Abdelrahman, Alva-Ruiz, Fogliati, Smoot, Truty)
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN (Graham)
| | - Rory Smoot
- From the Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN (Lynch, Abdelrahman, Alva-Ruiz, Fogliati, Smoot, Truty)
| | - Mark J Truty
- From the Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN (Lynch, Abdelrahman, Alva-Ruiz, Fogliati, Smoot, Truty)
| |
Collapse
|
2
|
Tanaka C, Furihata K, Naganuma S, Ogasawara M, Yoshioka R, Taniguchi H, Furihata M, Taniuchi K. Establishment of a mouse model of pancreatic cancer using human pancreatic cancer cell line S2-013-derived organoid. Hum Cell 2022; 35:735-744. [PMID: 35150409 PMCID: PMC8866361 DOI: 10.1007/s13577-022-00684-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/03/2022] [Indexed: 12/26/2022]
Abstract
A well-established preclinical model of pancreatic cancer needs to be established to facilitate research on new therapeutic targets. Recently established animal models of pancreatic cancer, including patient-derived tumor models and organoid models, are used for pre-clinical drug testing and biomarker discovery. These models have useful characteristics over conventional xenograft mouse models based on cell lines in preclinical studies, but still cannot accurately predict the clinical outcomes of new treatments and have not yet been broadly implemented in research. We employed pancreatic cancer organoid culture methods using the pancreatic cancer cell line S2-013, and performed pathological and immunohistochemical analyses to characterize tumor xenografts obtained from a mouse model implanted with S2-013 cell line-derived organoids. Serum levels of the pancreatic cancer tumor marker CA19-9 were measured by ELISA. We generated human pancreatic cancer organoids using a co-culture of S2-013 cells, human endothelial cells derived from human umbilical vein endothelial cells, and human mesenchymal stem cells, and established a mouse model with subcutaneously transplanted human pancreatic cancer organoids (S2-013-organoid model). Although blood clotting crater-like formation developed in the middle of subcutaneous xenografts in the S2-013-conventional model, created by subcutaneously injecting S2-013 cells into the right flank of nude mice, the size of xenografts in the S2-013-organoid model gradually increased without crater-like formation. Importantly, tumor xenografts obtained from the S2-013-organoid model exhibited a clinical human pancreatic cancer tissue-like cellular morphology, tissue architecture, and polarity, and actively formed cancer stroma containing mature blood vessels with the high expression of the vascular tight junction marker CD31. In subcutaneous xenografts of S2-013-conventional mice, no blood vessel density or widely expanding areas of necrotic regions were present. Consequently, serum levels of CA19-9 in the S2-013-organoid model correlated with tumor volumes. In addition, epithelial–mesenchymal transition, the conversion of epithelial cells to the mesenchymal phenotype, was observed in tumor xenografts of the S2-013-organoid model. The S2-013-organoid model provides tumor xenografts consisting of clinical human pancreatic cancer-like tissue formation with the effective development of vascularized stroma, and may be valuable for facilitating studies on pre-clinical drug testing and biomarker discovery.
Collapse
Affiliation(s)
- Chiharu Tanaka
- Department of Pathology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kaoru Furihata
- Department of Pathology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Mitsunari Ogasawara
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Reiko Yoshioka
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Hideki Taniguchi
- Department of Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Mutsuo Furihata
- Department of Pathology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Keisuke Taniuchi
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
3
|
Thomas RM. Invited Commentary. J Am Coll Surg 2021; 232:514-516. [PMID: 33771308 DOI: 10.1016/j.jamcollsurg.2020.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/28/2022]
|
4
|
A Prospective Feasibility Trial to Challenge Patient-Derived Pancreatic Cancer Organoids in Predicting Treatment Response. Cancers (Basel) 2021; 13:cancers13112539. [PMID: 34064221 PMCID: PMC8196829 DOI: 10.3390/cancers13112539] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
Real-time isolation, propagation, and pharmacotyping of patient-derived pancreatic cancer organoids (PDOs) may enable treatment response prediction and personalization of pancreatic cancer (PC) therapy. In our methodology, PDOs are isolated from 54 patients with suspected or confirmed PC in the framework of a prospective feasibility trial. The drug response of single agents is determined by a viability assay. Areas under the curves (AUC) are clustered for each drug, and a prediction score is developed for combined regimens. Pharmacotyping profiles are obtained from 28 PDOs (efficacy 63.6%) after a median of 53 days (range 21-126 days). PDOs exhibit heterogeneous responses to the standard-of-care drugs, and are classified into high, intermediate, or low responder categories. Our developed prediction model allows a successful response prediction in treatment-naïve patients with an accuracy of 91.1% for first-line and 80.0% for second-line regimens, respectively. The power of prediction declines in pretreated patients (accuracy 40.0%), particularly with more than one prior line of chemotherapy. Progression-free survival (PFS) is significantly longer in previously treatment-naïve patients receiving a predicted tumor sensitive compared to a predicted tumor resistant regimen (mPFS 141 vs. 46 days; p = 0.0048). In conclusion, generation and pharmacotyping of PDOs is feasible in clinical routine and may provide substantial benefit.
Collapse
|
5
|
Patient-derived xenografts in surgical oncology: A short research review. Surgery 2020; 168:1021-1025. [PMID: 33010939 DOI: 10.1016/j.surg.2020.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
|
6
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
7
|
Leiting JL, Murphy SJ, Bergquist JR, Hernandez MC, Ivanics T, Abdelrahman AM, Yang L, Lynch I, Smadbeck JB, Cleary SP, Nagorney DM, Torbenson MS, Graham RP, Roberts LR, Gores GJ, Smoot RL, Truty MJ. Biliary tract cancer patient-derived xenografts: Surgeon impact on individualized medicine. JHEP Rep 2020; 2:100068. [PMID: 32181445 PMCID: PMC7066236 DOI: 10.1016/j.jhepr.2020.100068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND & AIMS Biliary tract tumors are uncommon but highly aggressive malignancies with poor survival outcomes. Due to their low incidence, research into effective therapeutics has been limited. Novel research platforms for pre-clinical studies are desperately needed. We sought to develop a patient-derived biliary tract cancer xenograft catalog. METHODS With appropriate consent and approval, surplus malignant tissues were obtained from surgical resection or radiographic biopsy and implanted into immunocompromised mice. Mice were monitored for xenograft growth. Established xenografts were verified by a hepatobiliary pathologist. Xenograft characteristics were correlated with original patient/tumor characteristics and oncologic outcomes. A subset of xenografts were then genomically characterized using Mate Pair sequencing (MPseq). RESULTS Between October 2013 and January 2018, 87 patients with histologically confirmed biliary tract carcinomas were enrolled. Of the 87 patients, 47 validated PDX models were successfully generated. The majority of the PDX models were created from surgical resection specimens (n = 44, 94%), which were more likely to successfully engraft when compared to radiologic biopsies (p = 0.03). Histologic recapitulation of original patient tumor morphology was observed in all xenografts. Successful engraftment was an independent predictor for worse recurrence-free survival. MPseq showed genetically diverse tumors with frequent alterations of CDKN2A, SMAD4, NRG1, TP53. Sequencing also identified worse survival in patients with tumors containing tetraploid genomes. CONCLUSIONS This is the largest series of biliary tract cancer xenografts reported to date. Histologic and genomic analysis of patient-derived xenografts demonstrates accurate recapitulation of original tumor morphology with direct correlations to patient outcomes. Successful development of biliary cancer tumografts is feasible and may be used to direct subsequent therapy in high recurrence risk patients. LAY SUMMARY Patient biliary tract tumors grown in immunocompromised mice are an invaluable resource in the treatment of biliary tract cancers. They can be used to guide individualized cancer treatment in high-risk patients.
Collapse
Key Words
- CCA, cholangiocarcinoma
- ECM, extracellular matrix
- GBCA, gallbladder carcinoma
- HRs, hazard ratios
- LOH, loss of heterozygosity
- MatePair sequencing
- OPTR, overall patient take rate
- OS, overall survival
- PDX, patient-derived xenograft
- Patient-derived xenografts
- TTF, time to tumor formation
- TTH, time to tumor harvest
- biliary tract
- cholangiocarcinoma
- dCCA, distal cholangiocarcinoma
- gallbladder carcinoma
- iCCA, intrahepatic cholangiocarcinoma
- pCCA, perihilar cholangiocarcinoma
Collapse
Affiliation(s)
| | | | | | | | - Tommy Ivanics
- Department of Surgery, Henry Ford Medical Center, Detroit, MI
| | | | - Lin Yang
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Isaac Lynch
- Department of Surgery, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | - Lewis R. Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Gregory J. Gores
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | | | | |
Collapse
|
8
|
Chen Q, Wei T, Wang J, Zhang Q, Li J, Zhang J, Ni L, Wang Y, Bai X, Liang T. Patient-derived xenograft model engraftment predicts poor prognosis after surgery in patients with pancreatic cancer. Pancreatology 2020; 20:485-492. [PMID: 32113935 DOI: 10.1016/j.pan.2020.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To establish and evaluate a first generation patient-derived xenograft (PDX) model in nude mice using tumors resected from pancreatic cancer (PC) patients for the identification of key factors that influence xenograft success and prediction of patient prognosis. METHODS Primary tumor samples harvested from PC patients who underwent curative resection between May 2016 and April 2018 at our hospital were xenografted into nude mice. Tumor size was evaluated for 2 months. Patients' baseline characteristics and follow-up data were analyzed. RESULTS Tumor xenograft models were generated from 67 patients; 30 (44.8%) were successful and 37 (55.2%) failed. Xenograft models could recapitulate the pathology and genetic information of the primary tumors. Univariate analysis identified tumor engraftment, post-operation CA19-9, tumor size, lymph node status, and lymphovascular invasion as significant predictors (P=0.000, 0.023, 0.004, 0.035 and 0.005, respectively) of disease-free survival (DFS). Multivariate Cox regression analysis confirmed tumor engraftment, tumor size and lymphovascular invasion function as independent risk factors for DFS (P=0.000, 0.039 and 0.025, respectively). The hazard ratio of tumor engraftment for DFS was 0.239 (95% confidence interval, 0.109 to 0.524). Kaplan-Meier analysis of DFS indicated an unfavorable outcome in the engraftment group compared to that in the failed engraftment group (6.2 vs. 12.2 months, log rank P=0.000). CONCLUSION The pathology and genetic information of primary PC tumors are recapitulated in the PDX tumor model in nude mice. Furthermore, engraftment success is an effective predictor of disease recurrence in patients after surgery.
Collapse
Affiliation(s)
- Qi Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Jianxin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Jingying Zhang
- Department of General Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lei Ni
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Yi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Xu W, Zhao ZY, An QM, Dong B, Lv A, Li CP, Guan XY, Tian XY, Wu JH, Hao CY. Comprehensive comparison of patient-derived xenograft models in Hepatocellular Carcinoma and metastatic Liver Cancer. Int J Med Sci 2020; 17:3073-3081. [PMID: 33173428 PMCID: PMC7646096 DOI: 10.7150/ijms.46686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Patient-derived xenograft (PDX) models are effective preclinical cancer models that reproduce the tumor microenvironment of the human body. The methods have been widely used for drug screening, biomarker development, co-clinical trials, and personalized medicine. However, the low success rate and the long tumorigenesis period have largely limited their usage. In the present studies, we compared the PDX establishment between hepatocellular cancer (HCC) and metastatic liver cancer (MLC), and identified the key factors affecting the transplantation rate of PDXs. Surgically resected tumor specimens obtained from patients were subcutaneously inoculated into immunodeficient mice to construct PDX models. The overall transplantation rate was 38.5% (20/52), with the HCC group (28.1%, 9/32) being lower than MLC group (56.2%, 9/16). In addition, HCC group took significantly longer latency period than MLC group to construct PDX models. Hematoxylin and eosin staining results showed that the histopathology of all generations in PDX models was similar to the original tumor in all three types of cancer. The transplantation rate of PDX models in HCC patients was significantly associated with blood type (P=0.001), TNM stage (P=0.023), lymph node metastasis (P=0.042) and peripheral blood CA19-9 level (P=0.049), while the transplantation rate of PDX models in MLC patients was significantly associated with tumor size (P=0.034). This study demonstrates that PDX models can effectively reproduce the histological patterns of human tumors. The transplantation rate depends on the type of original tumor. Furthermore, it shows that the invasiveness of the original liver cancer affects the possibility of its growth in immunodeficient mice.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zheng-Yun Zhao
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K
| | - Qi-Ming An
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Bin Dong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ang Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Cheng-Peng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Ya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiu-Yun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian-Hui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chun-Yi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
10
|
Xenografts Derived From Patients' Ascites Recapitulate the Gemcitabine Resistance Observed in Pancreatic Cancer Patients. Pancreas 2019; 48:1294-1302. [PMID: 31688592 DOI: 10.1097/mpa.0000000000001438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Most patient-derived pancreatic ductal adenocarcinoma (PDAC) xenografts have been established from surgical specimens of patients who have not received chemotherapy. However, xenografts have rarely been established from chemotherapy-resistant, advanced PDACs, because such cases are usually inoperable. The purpose of this study is to establish patient-derived xenografts using PDAC cells refractory to chemotherapy. METHODS Clinical PDAC cells obtained from ascites of patients who had received continuous chemotherapy were implanted into the flanks of immunocompromised mice. Growth and histological features of the xenografts with and without gemcitabine treatment were then analyzed. RESULTS Ascites-derived PDAC cells were successfully expanded through serial xenograft passage without changes in histological appearance. While treatment with gemcitabine substantially inhibited the growth of all PDAC xenografts tested, the tumor volume gradually increased, and the tumors showed marked regrowth even under continued gemcitabine treatment. These findings are consistent with the actual clinical course of the corresponding patients for each xenograft. CONCLUSIONS Ascites-derived xenograft models represent a valuable experimental system for testing the efficacy of currently available therapeutic compounds on chemotherapy-resistant PDAC cells and for elucidation of the mechanisms underlying chemotherapy resistance.
Collapse
|
11
|
Xu W, Yang XW, Zhao ZY, Dong B, Guan XY, Tian XY, Qian HG, Hao CY. Establishment of pancreatic cancer patient-derived xenograft models and comparison of the differences among the generations. Am J Transl Res 2019; 11:3128-3139. [PMID: 31217882 PMCID: PMC6556656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Tumor samples of pancreatic ductal adenocarcinoma patients, who underwent resection surgery, were implanted into NOD/SCID mice to construct pancreatic cancer patient-derived xenograft (PDX) models and explore the biological changes in the different generations of PDXs. Ten PDXs were successfully generated, and the tumor formation rate of F1 PDXs was found to be 38.46%, which was lower than F2 (77.78%) and F3 (71.43%) PDXs. In addition, latent periods of tumorigenesis of F2 and F3 PDXs were significantly shorter, compared to that in F1 PDXs (P<0.05). Comparison of H&E staining of tumor tissue from primary pancreatic cancer and PDXs showed that all three generations of PDXs had similar histopathology to primary pancreatic cancer, indicating that PDXs may well reproduce the histological patterns of primary human cancer. Besides, Ki67 expression was increased in all three generations of PDXs compared to primary tumors of patients, and additionally, EpCAM expression was increased in F3 PDXs. These results were corroborated by the real-time qPCR and western blot results. Therefore, we concluded that PDXs are able to preserve the differentiation degree, morphological characteristics, and structural features of tumor cells. Furthermore, the latent periods of tumorigenesis are shortened after the first generation, which may be attributed to an increase in expression levels of tumor promoters such as Ki67 and EpCAM. PDX models may become an efficient tool for pancreatic cancer research.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & InstituteNo. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Xiao-Wei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & InstituteNo. 52 Fucheng Road, Haidian District, Beijing 100142, China
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua UniversityBeijing, China
| | - Zheng-Yun Zhao
- Department of Chemistry, Durham UniversityStockton Road, Durham DH1 3LE, U.K.
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Center Laboratory, Peking University Cancer Hospital & InstituteBeijing, China
| | - Xiao-Ya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & InstituteNo. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Xiu-Yun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & InstituteNo. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Hong-Gang Qian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & InstituteNo. 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Chun-Yi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & InstituteNo. 52 Fucheng Road, Haidian District, Beijing 100142, China
| |
Collapse
|
12
|
Bisht S, Feldmann G. Animal models for modeling pancreatic cancer and novel drug discovery. Expert Opin Drug Discov 2019; 14:127-142. [DOI: 10.1080/17460441.2019.1566319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Savita Bisht
- Department of Internal Medicine 3, University Hospital of Bonn, Bonn, Germany
| | - Georg Feldmann
- Department of Internal Medicine 3, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Koay EJ, Lee Y, Cristini V, Lowengrub JS, Kang Y, Lucas FAS, Hobbs BP, Ye R, Elganainy D, Almahariq M, Amer AM, Chatterjee D, Yan H, Park PC, Rios Perez MV, Li D, Garg N, Reiss KA, Yu S, Chauhan A, Zaid M, Nikzad N, Wolff RA, Javle M, Varadhachary GR, Shroff RT, Das P, Lee JE, Ferrari M, Maitra A, Taniguchi CM, Kim MP, Crane CH, Katz MH, Wang H, Bhosale P, Tamm EP, Fleming JB. A Visually Apparent and Quantifiable CT Imaging Feature Identifies Biophysical Subtypes of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2018; 24:5883-5894. [PMID: 30082477 PMCID: PMC6279613 DOI: 10.1158/1078-0432.ccr-17-3668] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous disease with variable presentations and natural histories of disease. We hypothesized that different morphologic characteristics of PDAC tumors on diagnostic computed tomography (CT) scans would reflect their underlying biology. EXPERIMENTAL DESIGN We developed a quantitative method to categorize the PDAC morphology on pretherapy CT scans from multiple datasets of patients with resectable and metastatic disease and correlated these patterns with clinical/pathologic measurements. We modeled macroscopic lesion growth computationally to test the effects of stroma on morphologic patterns, hypothesizing that the balance of proliferation and local migration rates of the cancer cells would determine tumor morphology. RESULTS In localized and metastatic PDAC, quantifying the change in enhancement on CT scans at the interface between tumor and parenchyma (delta) demonstrated that patients with conspicuous (high-delta) tumors had significantly less stroma, higher likelihood of multiple common pathway mutations, more mesenchymal features, higher likelihood of early distant metastasis, and shorter survival times compared with those with inconspicuous (low-delta) tumors. Pathologic measurements of stromal and mesenchymal features of the tumors supported the mathematical model's underlying theory for PDAC growth. CONCLUSIONS At baseline diagnosis, a visually striking and quantifiable CT imaging feature reflects the molecular and pathological heterogeneity of PDAC, and may be used to stratify patients into distinct subtypes. Moreover, growth patterns of PDAC may be described using physical principles, enabling new insights into diagnosis and treatment of this deadly disease.
Collapse
Affiliation(s)
- Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Yeonju Lee
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vittorio Cristini
- Center for Precision Biomedicine, The University of Texas Health Science Center, Houston, Texas
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John S Lowengrub
- Department of Mathematics, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
- Center for Complex Biological Systems, University of California, Irvine, California
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - F Anthony San Lucas
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian P Hobbs
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rong Ye
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dalia Elganainy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Muayad Almahariq
- Deparment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| | - Ahmed M Amer
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Deyali Chatterjee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huaming Yan
- Department of Mathematics, University of California, Irvine, California
| | - Peter C Park
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mayrim V Rios Perez
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dali Li
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naveen Garg
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kim A Reiss
- Department of Medical Oncology, The University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Shun Yu
- Department of Internal Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anil Chauhan
- Department of Radiology, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mohamed Zaid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Newsha Nikzad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gauri R Varadhachary
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rachna T Shroff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prajnan Das
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher H Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew H Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Priya Bhosale
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eric P Tamm
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Patient-derived xenograft cryopreservation and reanimation outcomes are dependent on cryoprotectant type. J Transl Med 2018; 98:947-956. [PMID: 29520054 PMCID: PMC6072591 DOI: 10.1038/s41374-018-0042-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 01/14/2018] [Accepted: 02/16/2018] [Indexed: 01/22/2023] Open
Abstract
Patient-derived xenografts (PDX) are being increasingly utilized in preclinical oncologic research. Maintaining large colonies of early generation tumor-bearing mice is impractical and cost-prohibitive. Optimal methods for efficient long-term cryopreservation and subsequent reanimation of PDX tumors are critical to any viable PDX program. We sought to compare the performance of "Standard" and "Specialized" cryoprotectant media on various cryopreservation and reanimation outcomes in PDX tumors. Standard (10% DMSO media) and Specialized (Cryostor®) media were compared between overall and matched PDX tumors. Primary outcome was reanimation engraftment efficiency (REE). Secondary outcomes included time to tumor formation (TTF), time to harvest (TTH), and potential loss of unique PDX lines. Overall 57 unique PDX tumors underwent 484 reanimation engraftment attempts after previous cryopreservation. There were 10 unique PDX tumors cryopreserved with Standard (71 attempts), 40 with Specialized (272 attempts), and 7 with both (141 attempts). Median frozen time of reanimated tumors was 29 weeks (max. 177). Tumor pathology, original primary PDX growth rates, frozen storage times, and number of implantations per PDX model were similar between cryoprotectant groups. Specialized media resulted in superior REE (overall: 82 vs. 39%, p < 0.0001; matched: 97 vs. 36%, p < 0.0001; >52 weeks cryostorage: 59 vs. 9%, p < 0.0001), shorter TTF (overall 24 vs. 54 days, p = 0.0051; matched 18 vs. 53 days, p = 0.0013) and shorter TTH (overall: 64 vs. 89 days, p = 0.009; matched: 47 vs. 88 days, p = 0.0005) compared to Standard. Specialized media demonstrated improved REE with extended duration cryostorage (p = 0.048) compared to Standard. Potential loss of unique PDX lines was lower with Specialized media (9 vs. 35%, p = 0.017). In conclusion, cryopreservation with a specialized cryoprotectant appears superior to traditional laboratory-based media and can be performed with reliable reanimation even after extended cryostorage.
Collapse
|
15
|
Tsai S, McOlash L, Palen K, Johnson B, Duris C, Yang Q, Dwinell MB, Hunt B, Evans DB, Gershan J, James MA. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer 2018; 18:335. [PMID: 29587663 PMCID: PMC5870823 DOI: 10.1186/s12885-018-4238-4] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/16/2018] [Indexed: 12/03/2022] Open
Abstract
Background Patient-derived tumor models are the new standard for pre-clinical drug testing and biomarker discovery. However, the emerging technology of primary pancreatic cancer organoids has not yet been broadly implemented in research, and complex organotypic models using organoids in co-culture with stromal and immune cellular components of the tumor have yet to be established. In this study, our objective was to develop and characterize pancreatic cancer organoids and multi-cell type organotypic co-culture models to demonstrate their applicability to the study of pancreatic cancer. Methods We employed organoid culture methods and flow cytometric, cytologic, immunofluorescent and immunohistochemical methods to develop and characterize patient-derived pancreatic cancer organoids and multi-cell type organotypic co-culture models of the tumor microenvironment. Results We describe the culture and characterization of human pancreatic cancer organoids from resection, ascites and rapid autopsy sources and the derivation of adherent tumor cell monocultures and tumor-associated fibroblasts from these sources. Primary human organoids displayed tumor-like cellular morphology, tissue architecture and polarity in contrast to cell line spheroids, which formed homogenous, non-lumen forming spheres. Importantly, we demonstrate the construction of complex organotypic models of tumor, stromal and immune components of the tumor microenvironment. Activation of myofibroblast-like cancer associated fibroblasts and tumor-dependent lymphocyte infiltration were observed in these models. Conclusions These studies provide the first report of novel and disease-relevant 3D in-vitro models representing pancreatic tumor, stromal and immune components using primary organoid co-cultures representative of the tumor-microenvironment. These models promise to facilitate the study of tumor-stroma and tumor-immune interaction and may be valuable for the assessment of immunotherapeutics such as checkpoint inhibitors in the context of T-cell infiltration.
Collapse
Affiliation(s)
- Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Surgical Oncology, 4850 TBRC, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Laura McOlash
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Katie Palen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Bryon Johnson
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Christine Duris
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qiuhui Yang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Bryan Hunt
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Douglas B Evans
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jill Gershan
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael A James
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Surgical Oncology, 4850 TBRC, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
16
|
Allaway RJ, Fischer DA, de Abreu FB, Gardner TB, Gordon SR, Barth RJ, Colacchio TA, Wood M, Kacsoh BZ, Bouley SJ, Cui J, Hamilton J, Choi JA, Lange JT, Peterson JD, Padmanabhan V, Tomlinson CR, Tsongalis GJ, Suriawinata AA, Greene CS, Sanchez Y, Smith KD. Genomic characterization of patient-derived xenograft models established from fine needle aspirate biopsies of a primary pancreatic ductal adenocarcinoma and from patient-matched metastatic sites. Oncotarget 2017; 7:17087-102. [PMID: 26934555 PMCID: PMC4941373 DOI: 10.18632/oncotarget.7718] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
N-of-1 trials target actionable mutations, yet such approaches do not test genomically-informed therapies in patient tumor models prior to patient treatment. To address this, we developed patient-derived xenograft (PDX) models from fine needle aspiration (FNA) biopsies (FNA-PDX) obtained from primary pancreatic ductal adenocarcinoma (PDAC) at the time of diagnosis. Here, we characterize PDX models established from one primary and two metastatic sites of one patient. We identified an activating KRAS G12R mutation among other mutations in these models. In explant cells derived from these PDX tumor models with a KRAS G12R mutation, treatment with inhibitors of CDKs (including CDK9) reduced phosphorylation of a marker of CDK9 activity (phospho-RNAPII CTD Ser2/5) and reduced viability/growth of explant cells derived from PDAC PDX models. Similarly, a CDK inhibitor reduced phospho-RNAPII CTD Ser2/5, increased apoptosis, and inhibited tumor growth in FNA-PDX and patient-matched metastatic-PDX models. In summary, PDX models can be constructed from FNA biopsies of PDAC which in turn can enable genomic characterization and identification of potential therapies.
Collapse
Affiliation(s)
- Robert J Allaway
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Dawn A Fischer
- Department of Surgery, Division of Surgical Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Francine B de Abreu
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Timothy B Gardner
- Department of Medicine, Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Stuart R Gordon
- Department of Medicine, Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Richard J Barth
- Department of Surgery, Division of Surgical Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.,Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Thomas A Colacchio
- Department of Surgery, Division of Surgical Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.,Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Matthew Wood
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.,Current location: Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Balint Z Kacsoh
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA
| | - Stephanie J Bouley
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Jingxuan Cui
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA
| | - Joanna Hamilton
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.,Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Jungbin A Choi
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Joshua T Lange
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Jason D Peterson
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | - Craig R Tomlinson
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.,Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA.,Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Gregory J Tsongalis
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.,Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Arief A Suriawinata
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Casey S Greene
- Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA.,Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA.,Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Yolanda Sanchez
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.,Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Kerrington D Smith
- Department of Surgery, Division of Surgical Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.,Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| |
Collapse
|
17
|
Pergolini I, Morales-Oyarvide V, Mino-Kenudson M, Honselmann KC, Rosenbaum MW, Nahar S, Kem M, Ferrone CR, Lillemoe KD, Bardeesy N, Ryan DP, Thayer SP, Warshaw AL, Fernández-del Castillo C, Liss AS. Tumor engraftment in patient-derived xenografts of pancreatic ductal adenocarcinoma is associated with adverse clinicopathological features and poor survival. PLoS One 2017; 12:e0182855. [PMID: 28854237 PMCID: PMC5576681 DOI: 10.1371/journal.pone.0182855] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023] Open
Abstract
Patient-derived xenograft (PDX) tumors are powerful tools to study cancer biology. However, the ability of PDX tumors to model the biological and histological diversity of pancreatic ductal adenocarcinoma (PDAC) is not well known. In this study, we subcutaneously implanted 133 primary and metastatic PDAC tumors into immunodeficient mice. Fifty-seven tumors were successfully engrafted and even after extensive passaging, the histology of poorly-, moderately-, and well-differentiated tumors was maintained in the PDX models. Moreover, the fibroblast and collagen contents in the stroma of patient tumors were recapitulated in the corresponding PDX models. Analysis of the clinicopathological features of patients revealed xenograft tumor engraftment was associated with lymphovascular invasion (P = 0.001) and worse recurrence-free (median, 7 vs. 16 months, log-rank P = 0.047) and overall survival (median, 13 vs. 21 months, log-rank P = 0.038). Among successful engraftments, median time of growth required for reimplantation into new mice was 151 days. Reflective of the inherent biological diversity between PDX tumors with rapid (<151 days) and slow growth, differences in their growth were maintained during extensive passaging. Rapid growth was additionally associated with lymph node metastasis (P = 0.022). The association of lymphovascular invasion and lymph node metastasis with PDX formation and rapid growth may reflect an underlying biological mechanism that allows these tumors to adapt and grow in a new environment. While the ability of PDX tumors to mimic the cellular and non-cellular features of the parental tumor stroma provides a valuable model to study the interaction of PDAC cells with the tumor microenvironment, the association of successful engraftment with adverse clinicopathological features suggests PDX models over represent more aggressive forms of this disease.
Collapse
Affiliation(s)
- Ilaria Pergolini
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Surgery, Universita’ Politecnica delle Marche, Ancona, Italy
| | - Vicente Morales-Oyarvide
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kim C. Honselmann
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew W. Rosenbaum
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sabikun Nahar
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marina Kem
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cristina R. Ferrone
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Keith D. Lillemoe
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David P. Ryan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sarah P. Thayer
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew L. Warshaw
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos Fernández-del Castillo
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew S. Liss
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Orthotopic Patient-Derived Pancreatic Cancer Xenografts Engraft Into the Pancreatic Parenchyma, Metastasize, and Induce Muscle Wasting to Recapitulate the Human Disease. Pancreas 2017; 46:813-819. [PMID: 28609371 PMCID: PMC7094873 DOI: 10.1097/mpa.0000000000000843] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Limitations associated with current animal models serve as a major obstacle to reliable preclinical evaluation of therapies in pancreatic cancer (PC). In an effort to develop more reliable preclinical models, we have recently established a subcutaneous patient-derived xenograft (PDX) model. However, critical aspects of PC responsible for its highly lethal nature, such as the development of distant metastasis and cancer cachexia, remain underrepresented in the flank PDX model. The purpose of this study was to evaluate the degree to which an orthotopic PDX model of PC recapitulates these aspects of the human disease. METHODS Human PDX-derived PC tumors were implanted directly into the pancreas of NOD.Cg-Prkdc Il2rg/SzJ mice. Tumor growth, metastasis, and muscle wasting were then evaluated. RESULTS Orthotopically implanted PDX-derived tumors consistently incorporated into the murine pancreatic parenchyma, metastasized to both the liver and lungs and induced muscle wasting directly proportional to the size of the tumor, consistent of the cancer cachexia syndrome. CONCLUSIONS Through the orthotopic implantation technique described, we demonstrate a highly reproducible model that recapitulates both local and systemic aspects of human PC.
Collapse
|
19
|
Roife D, Kang Y, Wang L, Fang B, Swisher SG, Gershenwald JE, Pretzsch S, Dinney CP, Katz MHG, Fleming JB. Generation of patient-derived xenografts from fine needle aspirates or core needle biopsy. Surgery 2017; 161:1246-1254. [PMID: 28081955 PMCID: PMC5404969 DOI: 10.1016/j.surg.2016.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Patient-derived xenografts have recently become a powerful tool for cancer research and may be used to guide personalized therapy. Thus far, patient-derived xenografts have been grown from tumor tissue obtained after operative resection; however, many cancer patients never undergo operative intervention for a variety of reasons. We hypothesized that xenograft tumors could be grown from smaller volumes of patient tissue, such as those obtained during diagnostic biopsies. METHODS Surgical specimens were obtained after resection of primary or metastatic lesions of the following cancers: pancreatic carcinoma, non-small cell lung cancer, bladder (urothelial) carcinoma, and melanoma. At least 10 cases of each cancer were included in this study. To mimic clinical biopsies, small fragments of the surgical specimens were biopsied with a 22-gauge needle, and the needle contents were injected subcutaneously in immunocompromised mice. The tumor fragment from which the biopsy was taken was also implanted subcutaneously in the contralateral side of the same mouse as a control. RESULTS Success rates of the traditional method of xenograft implantation ranged from 27.3%-70%. Success rates of the fine needle aspirate technique ranged from 0%-36.4%. An attempt to engraft a percutaneous core needle liver biopsy of a metastatic pancreatic adenocarcinoma also was successful. CONCLUSION We have found that it is possible to engraft fine needle aspirates and core biopsies of solid tumors in order to generate patient-derived xenografts. This may open up xenografting to a wider cancer patient population than previously possible.
Collapse
Affiliation(s)
- David Roife
- Department of General Surgery, The University of Texas Health Science Center at Houston, Houston, TX
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Li Wang
- Department of Thoracic Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Bingliang Fang
- Department of Thoracic Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Stephen G Swisher
- Department of Thoracic Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Shanna Pretzsch
- Department of Urology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Colin P Dinney
- Department of Urology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX.
| |
Collapse
|
20
|
Affiliation(s)
- Diana Behrens
- EPO - Experimental Pharmacology and Oncology GmbH - GmbH, Robert-Roessle-Str. 10, 13125 Berlin, Germany.
| | - Wolfgang Walther
- Experimental and Clinical Research Center (ECRC), Charité, University Medicine, Berlin; Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Iduna Fichtner
- EPO - Experimental Pharmacology and Oncology GmbH - GmbH, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
21
|
Halfter K, Mayer B. Bringing 3D tumor models to the clinic - predictive value for personalized medicine. Biotechnol J 2017; 12. [PMID: 28098436 DOI: 10.1002/biot.201600295] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 12/17/2022]
Abstract
Current decision-guiding algorithms in cancer drug treatment are based on decades of research and numerous clinical trials. For the majority of patients, this data is successfully applied for a systemic disease management. For a number of patients however, treatment stratification according to clinically based risk criteria will not be sufficient. The most effective treatment options are ideally identified prior to the start of clinical drug therapy. This review will discuss the implementation of three-dimensional (3D) cell culture models as a preclinical testing paradigm for the efficacy of clinical cancer treatment. Patient tumor-derived cells in 3D cultures duplicate the individual tumor microenvironment with a minimum of confounding factors. Clinical implementation of such personalized tumor models requires a high quality of methodological and clinical validation comparable to other biomarkers. A non-systematic literature search demonstrated the small number of prospective studies that have been conducted in this area of research. This may explain the current reluctance of many physicians and insurance providers in implementing this type of assay into the clinical diagnostic routine despite potential benefit for patients. Achieving valid and reproducible results with a high level of evidence is central in improving the acceptance of preclinical 3D tumor models.
Collapse
Affiliation(s)
| | - Barbara Mayer
- SpheroTec GmbH, Martinsried, Germany.,Department of General, Visceral, and Transplantation Surgery, Hospital of the LMU Munich, Munich, Germany
| |
Collapse
|
22
|
Pham K, Delitto D, Knowlton AE, Hartlage ER, Madhavan R, Gonzalo DH, Thomas RM, Behrns KE, George TJ, Hughes SJ, Wallet SM, Liu C, Trevino JG. Isolation of Pancreatic Cancer Cells from a Patient-Derived Xenograft Model Allows for Practical Expansion and Preserved Heterogeneity in Culture. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1537-46. [PMID: 27102771 DOI: 10.1016/j.ajpath.2016.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 01/18/2023]
Abstract
Commercially available, highly passaged pancreatic cancer (PC) cell lines are of limited translational value. Attempts to overcome this limitation have primarily consisted of cancer cell isolation and culture directly from human PC specimens. However, these techniques are associated with exceedingly low success rates. Here, we demonstrate a highly reproducible culture of primary PC cell lines (PPCLs) from patient-derived xenografts, which preserve, in part, the intratumoral heterogeneity known to exist in PC. PPCL expansion from patient-derived xenografts was successful in 100% of attempts (5 of 5). Phenotypic analysis was evaluated with flow cytometry, immunofluorescence microscopy, and short tandem repeat profiling. Importantly, tumorigenicity of PPCLs expanded from patient-derived xenografts was assessed by subcutaneous injection into nonobese diabeteic.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ mice. Morphologically, subcutaneous injection of all PPCLs into mice yielded tumors with similar characteristics to the parent xenograft. PPCLs uniformly expressed class I human leukocyte antigen, epithelial cell adhesion molecule, and cytokeratin-19. Heterogeneity within each PPCL persisted in culture for the frequency of cells expressing the cancer stem cell markers CD44, CD133, and c-Met and the immunologic markers human leukocyte antigen class II and programmed death ligand 1. This work therefore presents a reliable method for the rapid expansion of primary human PC cells and, thereby, provides a platform for translational investigation and, importantly, potential personalized therapeutic approaches.
Collapse
Affiliation(s)
- Kien Pham
- Department of Pathology, Immunology, Laboratory Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Daniel Delitto
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Andrea E Knowlton
- Department of Oral Biology, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Emily R Hartlage
- Department of Oral Biology, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Ricky Madhavan
- Department of Pathology, Immunology, Laboratory Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - David H Gonzalo
- Department of Pathology, Immunology, Laboratory Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Ryan M Thomas
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Kevin E Behrns
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Thomas J George
- Department of Internal Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Steven J Hughes
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Shannon M Wallet
- Department of Internal Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Chen Liu
- Department of Pathology, Immunology, Laboratory Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida.
| | - Jose G Trevino
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida.
| |
Collapse
|
23
|
Iontophoretic device delivery for the localized treatment of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A 2016; 113:2200-5. [PMID: 26858448 DOI: 10.1073/pnas.1600421113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Poor delivery and systemic toxicity of many cytotoxic agents, such as the recent promising combination chemotherapy regimen of folinic acid (leucovorin), fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX), restrict their full utility in the treatment of pancreatic cancer. Local delivery of chemotherapies has become possible using iontophoretic devices that are implanted directly onto pancreatic tumors. We have fabricated implantable iontophoretic devices and tested the local iontophoretic delivery of FOLFIRINOX for the treatment of pancreatic cancer in an orthotopic patient-derived xenograft model. Iontophoretic delivery of FOLFIRINOX was found to increase tumor exposure by almost an order of magnitude compared with i.v. delivery with substantially lower plasma concentrations. Mice treated for 7 wk with device FOLFIRINOX experienced significantly greater tumor growth inhibition compared with i.v. FOLFIRINOX. A marker of cell proliferation, Ki-67, was stained, showing a significant reduction in tumor cell proliferation. These data capitalize on the unique ability of an implantable iontophoretic device to deliver much higher concentrations of drug to the tumor compared with i.v. delivery. Local iontophoretic delivery of cytotoxic agents should be considered for the treatment of patients with unresectable nonmetastatic disease and for patients with the need for palliation of local symptoms, and may be considered as a neoadjuvant approach to improve resection rates and outcome in patients with localized and locally advanced pancreatic cancer.
Collapse
|
24
|
Abstract
Investigations focused on the interplay between the human microbiome and cancer development, herein termed the 'oncobiome', have been growing at a rapid rate. However, these studies to date have primarily demonstrated associative relationships rather than causative ones. We pose the question of whether this emerging field of research is a 'mirage' without a clear picture, or truly represents a paradigm shift for cancer research. We propose the necessary steps needed to answer crucial questions and push the field forward to bring the mirage into a tangible reality.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA ; Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Christian Jobin
- Department of Medicine and Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|