1
|
Kim HS, Kang MJ, Kang J, Kim K, Kim B, Kim SH, Kim SJ, Kim YI, Kim JY, Kim JS, Kim H, Kim HJ, Nahm JH, Park WS, Park E, Park JK, Park JM, Song BJ, Shin YC, Ahn KS, Woo SM, Yu JI, Yoo C, Lee K, Lee DH, Lee MA, Lee SE, Lee IJ, Lee H, Im JH, Jang KT, Jang HY, Jun SY, Chon HJ, Jung MK, Chung YE, Chong JU, Cho E, Chie EK, Choi SB, Choi SY, Choi SJ, Choi JY, Choi HJ, Hong SM, Hong JH, Hong TH, Hwang SH, Hwang IG, Park JS. Practice guidelines for managing extrahepatic biliary tract cancers. Ann Hepatobiliary Pancreat Surg 2024; 28:161-202. [PMID: 38679456 PMCID: PMC11128785 DOI: 10.14701/ahbps.23-170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 05/01/2024] Open
Abstract
Backgrounds/Aims Reported incidence of extrahepatic bile duct cancer is higher in Asians than in Western populations. Korea, in particular, is one of the countries with the highest incidence rates of extrahepatic bile duct cancer in the world. Although research and innovative therapeutic modalities for extrahepatic bile duct cancer are emerging, clinical guidelines are currently unavailable in Korea. The Korean Society of Hepato-Biliary-Pancreatic Surgery in collaboration with related societies (Korean Pancreatic and Biliary Surgery Society, Korean Society of Abdominal Radiology, Korean Society of Medical Oncology, Korean Society of Radiation Oncology, Korean Society of Pathologists, and Korean Society of Nuclear Medicine) decided to establish clinical guideline for extrahepatic bile duct cancer in June 2021. Methods Contents of the guidelines were developed through subgroup meetings for each key question and a preliminary draft was finalized through a Clinical Guidelines Committee workshop. Results In November 2021, the finalized draft was presented for public scrutiny during a formal hearing. Conclusions The extrahepatic guideline committee believed that this guideline could be helpful in the treatment of patients.
Collapse
Affiliation(s)
- Hyung Sun Kim
- Department of Surgery, Pancreatobiliary Clinic, Yonsei University College of Medicine, Seoul, Korea
| | - Mee Joo Kang
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Jingu Kang
- Department of Internal Medicine, Kangdong Sacred Heart Hospital of Hallym University Medical Center, Seoul, Korea
| | - Kyubo Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Bohyun Kim
- Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Seong-Hun Kim
- Department of Internal Medicine, Jeonbuk National University Medical School and Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Soo Jin Kim
- Department of Radiology, National Cancer Center, Goyang, Korea
| | - Yong-Il Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Young Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Jin Sil Kim
- Department of Radiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Jung Kim
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Ji Hae Nahm
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Won Suk Park
- Division of Gastroenterology, Department of Internal Medicine, Daejeon St. Mary’s Hospital College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | - Eunkyu Park
- Division of HBP Surgery, Department of Surgery, Chonnam National University Hospital, Gwangju, Korea
| | - Joo Kyung Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Myung Park
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Byeong Jun Song
- Department of Internal Medicine, Myongji Hospital, Goyang, Korea
| | - Yong Chan Shin
- Department of Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Keun Soo Ahn
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Keimyung University Dongsan Hospital, Daegu, Korea
| | - Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, Hospital, Immuno-Oncology Branch Division of Rare and Refractory Center, Research Institute of National Cancer Center, Goyang, Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoungbun Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Myung Ah Lee
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Eun Lee
- Department of Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ik Jae Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Huisong Lee
- Department of Surgery, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Jung Ho Im
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Kee-Taek Jang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Young Jang
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun-Young Jun
- Department of Pathology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hong Jae Chon
- Department of Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Min Kyu Jung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea
| | - Yong Eun Chung
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Uk Chong
- Department of Surgery, National Health Insurance Services Ilsan Hospital, Goyang, Korea
| | - Eunae Cho
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Sae Byeol Choi
- Department of Surgery, Korea Universtiy Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Seo-Yeon Choi
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seong Ji Choi
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye-Jeong Choi
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Hyung Hong
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae Ho Hong
- Division of Hepato-Biliary and Pancreas Surgery, Department of Surgery, Seoul St. Mary’s Hospital College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Shin Hye Hwang
- Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - In Gyu Hwang
- Division of Hemato-Oncology, Department of Internal Medicine, Chung-Ang University Hospital Chung-Ang University College of Medicine, Seoul, Korea
| | - Joon Seong Park
- Department of Surgery, Pancreatobiliary Clinic, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Bao F, Liu J, Chen H, Miao L, Xu Z, Zhang G. Diagnosis Biomarkers of Cholangiocarcinoma in Human Bile: An Evidence-Based Study. Cancers (Basel) 2022; 14:cancers14163921. [PMID: 36010914 PMCID: PMC9406189 DOI: 10.3390/cancers14163921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary A liquid biopsy has the characteristics of low trauma and easy acquisition in the diagnosis of cholangiocarcinoma. Many researchers try to find diagnostic or prognostic biomarkers of CCA through blood, urine, bile and other body fluids. Due to the close proximity of bile to the lesion and the stable nature, bile gradually comes into people’s view. The evaluation of human bile diagnostic biomarkers is not only to the benefit of screening more suitable clinical markers but also of exploring the pathological changes of the disease. Abstract Cholangiocarcinoma (CCA) is a multifactorial malignant tumor of the biliary tract, and the incidence of CCA is increasing in recent years. At present, the diagnosis of CCA mainly depends on imaging and invasive examination, with limited specificity and sensitivity and late detection. The early diagnosis of CCA always faces the dilemma of lacking specific diagnostic biomarkers. Non-invasive methods to assess the degree of CAA have been developed throughout the last decades. Among the many specimens looking for CCA biomarkers, bile has gotten a lot of attention lately. This paper mainly summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in human bile at the levels of the gene, protein, metabolite, extracellular vesicles and volatile organic compounds.
Collapse
Affiliation(s)
- Fang Bao
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiayue Liu
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Haiyang Chen
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Correspondence: (Z.X.); (G.Z.)
| | - Guixin Zhang
- Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
- Correspondence: (Z.X.); (G.Z.)
| |
Collapse
|
3
|
Miyoshi E, Kamada Y, Suzuki T. Functional glycomics: Application to medical science and hepatology. Hepatol Res 2020; 50:153-164. [PMID: 31750967 DOI: 10.1111/hepr.13459] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/20/2019] [Accepted: 10/29/2019] [Indexed: 02/08/2023]
Abstract
Glycomics refers to the comprehensive analysis of glycans. Recent progress in glycotechnology enables the determination of a variety of biological functions of glycans. Among different glycosylation patterns, certain types of aberrant glycosylation are linked to cancer and/or inflammation, and thus have biological importance. Glycotechnology has been applied to many fields of medical science, including hepatology. In particular, dramatic changes in glycosylation are observed in the progression of liver diseases. As the liver produces so many serum glycoproteins, changes in glycosylation of these proteins might provide useful disease biomarkers. Furthermore, many patients with genetic diseases of glycosylation who have liver dysfunction have been found as a result from whole genome sequencing, and various kinds of glycotherapy have been developed, especially in immunotherapy. In this review, we describe our basic knowledge of glycobiology and discuss the application of these data to medical science, especially hepatology.
Collapse
Affiliation(s)
- Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama, Japan
| |
Collapse
|
4
|
Tang Z, Yang Y, Zhang J, Fu W, Lin Y, Su G, Li Y, Meng W, Li X, Xie X. Quantitative Proteomic Analysis and Evaluation of the Potential Prognostic Biomarkers in Cholangiocarcinoma. J Cancer 2019; 10:3985-3999. [PMID: 31417643 DOI: 10.7150/jca.29354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
Background & Aims: Cholangiocarcinoma (CCA) patients have poor outcomes since the late diagnosis limits the benefits of surgery therapy and curative treatment options. The present study was designed to screen the biomarkers for CCA patients. Methods: Quantitative iTRAQ proteomic analysis was used to identify differentially expressed proteins between CCA and pericarcineous tissue. We examined the expression profile of PRDX2, BGN, LUM, and PPP3CA in CCA tissue using immunohistochemistry. We further investigated the correlation between PPP3CA expression and the survival of CCA patients (n=91). Results: 2,886 confidential proteins were identified by using the iTRAQ technique, 233 of which were differentially expressed. PRDX2, BGN, PPP3CA, and LUM were expressed in CCA tissue, whereas they were not expressed in choledocal cyst tissue except for LUM. PPP3CA was expressed in the cytoplasm of carcinoma cells in 22 cases (24.2%) of 91 CCA patients. Patients with PPP3CA-positive expression showed a significantly shorter survival period than did non-expressing patients (P = 0.030). The univariate analysis showed that tumor size (P = 0.002), vascular invasion (P = 0.001), histological grading (P = 0.011), and PPP3CA expression (P = 0.033) were statistically significant risk factors affecting the prognosis of CCA patients. The multivariate analysis demonstrated PPP3CA expression (P = 0.009) and vascular invasion (P = 0.012) were statistically significant independent risk factors of CCA patients. Conclusions: The results suggested that the expression of PPP3CA in CCA patients is a new independent factor for poor prognosis and a useful prognostic predictor for patients with CCA.
Collapse
Affiliation(s)
- Zengwei Tang
- The First Clinical Medical School of Lanzhou University, Lanzhou 730000, China
| | - Yuan Yang
- The First Clinical Medical School of Lanzhou University, Lanzhou 730000, China
| | - Jinduo Zhang
- The First Clinical Medical School of Lanzhou University, Lanzhou 730000, China.,Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wenkang Fu
- The First Clinical Medical School of Lanzhou University, Lanzhou 730000, China
| | - Yanyan Lin
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Gang Su
- School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou 730000, China
| | - Yan Li
- Cleveland Clinic, Department of Inflammation and Immunity, Cleveland OHIO 44195, USA
| | - Wenbo Meng
- The First Clinical Medical School of Lanzhou University, Lanzhou 730000, China.,Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou 730000, China.,The second department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Tang Z, Yang Y, Wang X, Meng W, Li X. Meta-analysis of the diagnostic value of Wisteria floribunda agglutinin-sialylated mucin1 and the prognostic role of mucin1 in human cholangiocarcinoma. BMJ Open 2019; 9:e021693. [PMID: 30700476 PMCID: PMC6352767 DOI: 10.1136/bmjopen-2018-021693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Serum carbohydrate antigen 19-9 (CA19-9) is a widely used tumour marker for cholangiocarcinoma (CCA). However, it is not a necessarily good CCA marker in terms of diagnostic accuracy. The purpose of this study is to evaluate the diagnostic value of Wisteria floribundaagglutinin-sialylated Mucin1 (WFA-MUC1) and the prognostic role of Mucin1 (MUC1) in human CCA. DESIGN Meta-analysis. DATA SOURCES Studies published in PubMed, Web of Science, The Cochrane Library and the China National Knowledge Infrastructure up to 11 October 2017. ELIGIBILITY CRITERIA We included reports assessing the diagnostic capacity of WFA-MUC1 and the prognostic role of MUC1 in CCA. The receiver operating characteristic curve (ROC) of WFA-MUC1 and/or CA19-9 was described, and the HRs including 95% CI and the corresponding p value for MUC1 can be extracted. DATA EXTRACTION AND SYNTHESIS Two independent researchers extracted data and assessed risk of bias. The diagnostic sensitivity and specificity data of WFA-MUC1 were extracted and analysed as bivariate data. Pooled HRs and its 95% CI for MUC1 were calculated with a random-effects meta-analysis model on overall survival of resectable CCA. RESULTS Sixteen reports were included in this study. The pooled sensitivity and specificity of WFA-MUC1 were 0.76 (95% CI 0.71 to 0.81) and 0.72 (95% CI 0.59 to 0.83) in serum, 0.85 (95% CI 0.81 to 0.89) and 0.72 (95% CI 0.64 to 0.80) in bile and 0.72 (95% CI 0.50 to 0.87) and 0.85 (95% CI 0.70 to 0.93) in tissue, respectively. The summary ROC (SROC) were 0.77 (95% CI 0.73 to 0.81) in serum, 0.88 (95% CI 0.85 to 0.90) in bile and 0.86 (95% CI 0.83 to 0.89) in tissue, respectively. Furthermore, the pooled sensitivity and specificity and the SROC of CA19-9 in serum were 0.67 (95% CI 0.61 to 0.72), 0.86 (95% CI 0.75 to 0.93) and 0.75 (95% CI 0.71 to 0.79), respectively. The pooled HRs for MUC1 was 2.20 (95% CI 1.57 to 3.01) in CCA and 4.17 (95% CI 1.71 to 10.17) in mass-forming intrahepatic CCA. CONCLUSIONS Compared with CA19-9, WFA-MUC1 was shown to possess stronger diagnostic capability. MUC1 could serve as a prognosis factor for poor outcomes of CCA, particularly, mass-forming intrahepatic CCA.
Collapse
Affiliation(s)
- Zengwei Tang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Yuan Yang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Xiaolu Wang
- Department of General Surgery, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Wenbo Meng
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
- The Second Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Matsuda A, Higashi M, Nakagawa T, Yokoyama S, Kuno A, Yonezawa S, Narimatsu H. Assessment of tumor characteristics based on glycoform analysis of membrane-tethered MUC1. J Transl Med 2017; 97:1103-1113. [PMID: 28581490 DOI: 10.1038/labinvest.2017.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/12/2022] Open
Abstract
Clinical tissue specimens are useful for pathological diagnosis, which is, in some cases, supported by visualization of biomolecule localization. In general, diagnostic specificity in molecular pathology is increased by the acquisition of a probe to distinguish the modification of isomers. Although glycosylation is one of the candidate modifications in a protein, comparative glycan analysis of disease-associated proteins derived from a single tissue section is still challenging because of the lack of analytical sensitivity. Here we demonstrate a possible method for differential glycoform analysis of an endogenous tumor-associated glycoprotein MUC1 by an antibody-overlay lectin microarray. Tissue sections (5 μm thick) of patients with cholangiocarcinoma (CCA; n=21) and pancreatic ductal adenocarcinoma (PDAC; n=50) were stained with an anti-MUC1 antibody MY.1E12 that was established as a monoclonal antibody recognizing an MUC1 glycosylation isoform with a sialyl-core 1 structure (NeuAcα2-3galactosyl β1-3-N-acetylgalactosamine). MY.1E12-positive tissue areas (2.5 mm2) were selectively dissected with a laser capture microdissection procedure. The membrane MUC1 was enriched by immunoprecipitation with MY.1E12 and subjected to lectin microarray analysis. Even though the reactivities of MY.1E12 between CCA and PDAC were similar, the lectin-binding patterns varied. We found Maackia amurensis leukoagglutinin and pokeweed lectin distinguished MY.1E12-reactive MUC1 of CCA from that of PDAC. Moreover, MUC1 with M. amurensis hemagglutinin (MAH) reactivity potentially reflected the degree of malignancy. These results were confirmed with MAH-MY.1E12 double fluorescent immunostaining. These glycan changes on MUC1 were detected with high sensitivity owing to the cluster effect of immobilized lectins on a tandem repeat peptide antigen covered with highly dense glycosylation such as mucin. Our approach provides the information to investigate novel glycodynamics in biology, for example, glycoalteration, as well as diseases related to not only MUC1 but also other membrane proteins.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Michiyo Higashi
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Tomomi Nakagawa
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Seiya Yokoyama
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Atsushi Kuno
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Suguru Yonezawa
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Hisashi Narimatsu
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Tamaki N, Kuno A, Matsuda A, Tsujikawa H, Yamazaki K, Yasui Y, Tsuchiya K, Nakanishi H, Itakura J, Korenaga M, Mizokami M, Kurosaki M, Sakamoto M, Narimatsu H, Izumi N. Serum Wisteria Floribunda Agglutinin-Positive Sialylated Mucin 1 as a Marker of Progenitor/Biliary Features in Hepatocellular Carcinoma. Sci Rep 2017; 7:244. [PMID: 28325920 PMCID: PMC5428232 DOI: 10.1038/s41598-017-00357-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/21/2017] [Indexed: 12/18/2022] Open
Abstract
Histological molecular classification of hepatocellular carcinoma (HCC) is clinically important for predicting the prognosis. However, a reliable serum marker has not been established. The aim of this study was to evaluate the diagnostic value of serum Wisteria Floribunda agglutinin-positive sialylated mucin 1 (WFA-sialylated MUC1), which is a novel biliary marker, as a marker of HCC with hepatic progenitor cell (HPC)/biliary features and of prognosis. A total of 144 consecutive patients who underwent complete radiofrequency ablation of primary HCC were enrolled. A serum WFA-sialylated MUC1 level of 900 μL/mL was determined as the optimal cutoff value for prediction of immunohistochemical staining for HPC/biliary features [sialylated MUC1 and cytokeratin 19 (CK19)]. Positive staining rate of sialylated MUC1 and CK19 was significantly higher in patients with WFA-sialylated MUC1 ≥900 than those with WFA-sialylated MUC1 <900. Furthermore, cumulative incidence of HCC recurrence was significantly higher in patients with WFA-sialylated MUC1 ≥900 and on multivariate analysis, serum WFA-sialylated MUC1 levels was an independent predictor of HCC recurrence. These results revealed that serum WFA-sialylated MUC1 was associated with histological feature of HCC and recurrence after curative therapy and it could be a novel marker of HPC/biliary features in HCC and of prognosis.
Collapse
Affiliation(s)
- Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Atsushi Kuno
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Atsushi Matsuda
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of medicine, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of medicine, Tokyo, Japan
| | - Yutaka Yasui
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Kaoru Tsuchiya
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Hiroyuki Nakanishi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Jun Itakura
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Masaaki Korenaga
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Masashi Mizokami
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of medicine, Tokyo, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan.
| |
Collapse
|
8
|
Hagiwara K, Tobisawa Y, Kaya T, Kaneko T, Hatakeyama S, Mori K, Hashimoto Y, Koie T, Suda Y, Ohyama C, Yoneyama T. Wisteria floribunda Agglutinin and Its Reactive-Glycan-Carrying Prostate-Specific Antigen as a Novel Diagnostic and Prognostic Marker of Prostate Cancer. Int J Mol Sci 2017; 18:ijms18020261. [PMID: 28134773 PMCID: PMC5343797 DOI: 10.3390/ijms18020261] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/09/2023] Open
Abstract
Wisteria floribunda agglutinin (WFA) preferably binds to LacdiNAc glycans, and its reactivity is associated with tumor progression. The aim of this study to examine whether the serum LacdiNAc carrying prostate-specific antigen–glycosylation isomer (PSA-Gi) and WFA-reactivity of tumor tissue can be applied as a diagnostic and prognostic marker of prostate cancer (PCa). Between 2007 and 2016, serum PSA-Gi levels before prostate biopsy (Pbx) were measured in 184 biopsy-proven benign prostatic hyperplasia patients and 244 PCa patients using an automated lectin-antibody immunoassay. WFA-reactivity on tumor was analyzed in 260 radical prostatectomy (RP) patients. Diagnostic and prognostic performance of serum PSA-Gi was evaluated using area under the receiver-operator characteristic curve (AUC). Prognostic performance of WFA-reactivity on tumor was evaluated via Cox proportional hazards regression analysis and nomogram. The AUC of serum PSA-Gi detecting PCa and predicting Pbx Grade Group (GG) 3 and GG ≥ 3 after RP was much higher than those of conventional PSA. Multivariate analysis showed that WFA-reactivity on prostate tumor was an independent risk factor of PSA recurrence. The nomogram was a strong model for predicting PSA-free survival provability with a c-index ≥0.7. Serum PSA-Gi levels and WFA-reactivity on prostate tumor may be a novel diagnostic and pre- and post-operative prognostic biomarkers of PCa, respectively.
Collapse
Affiliation(s)
- Kazuhisa Hagiwara
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Takatoshi Kaya
- Corporate R&D Headquarters, Konica Minolta, Inc., Hino-shi, Tokyo 191-8511, Japan.
| | - Tomonori Kaneko
- Corporate R&D Headquarters, Konica Minolta, Inc., Hino-shi, Tokyo 191-8511, Japan.
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Kazuyuki Mori
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Yasuhiro Hashimoto
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Takuya Koie
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Yoshihiko Suda
- Corporate R&D Headquarters, Konica Minolta, Inc., Hino-shi, Tokyo 191-8511, Japan.
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Tohru Yoneyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| |
Collapse
|
9
|
Manna D, Pust S, Torgersen ML, Cordara G, Künzler M, Krengel U, Sandvig K. Polyporus squamosus Lectin 1a (PSL1a) Exhibits Cytotoxicity in Mammalian Cells by Disruption of Focal Adhesions, Inhibition of Protein Synthesis and Induction of Apoptosis. PLoS One 2017; 12:e0170716. [PMID: 28114329 PMCID: PMC5256987 DOI: 10.1371/journal.pone.0170716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/09/2017] [Indexed: 11/18/2022] Open
Abstract
PSL1a is a lectin from the mushroom Polyporus squamosus that binds to sialylated glycans and glycoconjugates with high specificity and selectivity. In addition to its N-terminal carbohydrate-binding domain, PSL1a possesses a Ca2+-dependent proteolytic activity in the C-terminal domain. In the present study, we demonstrate that PSL1a has cytotoxic effects on mammalian cancer cells, and we show that the cytotoxicity is dependent on the cysteine protease activity. PSL1a treatment leads to cell rounding and detachment from the substratum, concomitant with disruption of vinculin complexes in focal adhesions. We also demonstrate that PSL1a inhibits protein synthesis and induces apoptosis in HeLa cells, in a time- and concentration-dependent manner.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Chemistry, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sascha Pust
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maria L. Torgersen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Markus Künzler
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
- * E-mail: (UK); (KS)
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- * E-mail: (UK); (KS)
| |
Collapse
|
10
|
Haji-Ghassemi O, Gilbert M, Spence J, Schur MJ, Parker MJ, Jenkins ML, Burke JE, van Faassen H, Young NM, Evans SV. Molecular Basis for Recognition of the Cancer Glycobiomarker, LacdiNAc (GalNAc[β1→4]GlcNAc), by Wisteria floribunda Agglutinin. J Biol Chem 2016; 291:24085-24095. [PMID: 27601469 DOI: 10.1074/jbc.m116.750463] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Indexed: 01/10/2023] Open
Abstract
Aberrant glycosylation and the overexpression of specific carbohydrate epitopes is a hallmark of many cancers, and tumor-associated oligosaccharides are actively investigated as targets for immunotherapy and diagnostics. Wisteria floribunda agglutinin (WFA) is a legume lectin that recognizes terminal N-acetylgalactosaminides with high affinity. WFA preferentially binds the disaccharide LacdiNAc (β-d-GalNAc-[1→4]-d-GlcNAc), which is associated with tumor malignancy in leukemia, prostate, pancreatic, ovarian, and liver cancers and has shown promise in cancer glycobiomarker detection. The mechanism of specificity for WFA recognition of LacdiNAc is not fully understood. To address this problem, we have determined affinities and structure of WFA in complex with GalNAc and LacdiNAc. Affinities toward Gal, GalNAc, and LacdiNAc were measured via surface plasmon resonance, yielding KD values of 4.67 × 10-4 m, 9.24 × 10-5 m, and 5.45 × 10-6 m, respectively. Structures of WFA in complex with LacdiNAc and GalNAc have been determined to 1.80-2.32 Å resolution. These high resolution structures revealed a hydrophobic groove complementary to the GalNAc and, to a minor extent, to the back-face of the GlcNAc sugar ring. Remarkably, the contribution of this small hydrophobic surface significantly increases the observed affinity for LacdiNAc over GalNAc. Tandem MS sequencing confirmed the presence of two isolectin forms in commercially available WFA differing only in the identities of two amino acids. Finally, the WFA carbohydrate binding site is similar to a homologous lectin isolated from Vatairea macrocarpa in complex with GalNAc, which, unlike WFA, binds not only αGalNAc but also terminal Ser/Thr O-linked αGalNAc (Tn antigen).
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| | - Michel Gilbert
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Jenifer Spence
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| | - Melissa J Schur
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Matthew J Parker
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| | - Meredith L Jenkins
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| | - John E Burke
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| | - Henk van Faassen
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - N Martin Young
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Stephen V Evans
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada and
| |
Collapse
|
11
|
Terai K, Jiang M, Tokuyama W, Murano T, Takada N, Fujimura K, Ebinuma H, Kishimoto T, Hiruta N, Schneider WJ, Bujo H. Levels of soluble LR11/SorLA are highly increased in the bile of patients with biliary tract and pancreatic cancers. Clin Chim Acta 2016; 457:130-6. [PMID: 27079357 DOI: 10.1016/j.cca.2016.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND The utility of molecules derived from cancer cells as biomarkers of the pathological status in biliary tract and pancreatic cancers is still limited. Soluble LDL receptor relative with 11 ligand-binding repeats (sLR11), a molecule released from immature cells, has been shown to be a circulating biomarker for early stage hematological malignancies. METHODS We have evaluated the pathological significance of bile sLR11 levels in 147 samples from 72 patients with biliary tract cancer (BTC), pancreatic cancer (PC), or benign diseases. RESULTS The bile sLR11 levels in the cancer patients were significantly increased compared with those in patients without cancer, independent of cytological detection of cancer cells in bile. The average bile sLR11 levels in cancer patients were significantly higher than in those with benign diseases, while levels of bile carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) were not different. LR11 protein was found to be highly expressed in the BTC and PC cells. The LR11 transcript levels in cholangiocarcinoma and pancreatic cancer cell lines were sharply induced during proliferation and significantly increased under hypoxic conditions. CONCLUSIONS Therefore, sLR11 levels in bile may be indicative of cancer cell conditions and may serve as potential novel biomarker in patients with BTC and PC.
Collapse
Affiliation(s)
- Kensuke Terai
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan; Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan; Department of Biomolecular Science, Toho University Graduate School of Science, Funabashi, Japan
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Wataru Tokuyama
- Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan
| | - Takeyoshi Murano
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Nobuo Takada
- Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Kengo Fujimura
- Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan
| | - Hiroyuki Ebinuma
- Tsukuba Research Institute, Sekisui Medical Co Ltd, Ryugasaki, Japan
| | - Toshihiko Kishimoto
- Department of Biomolecular Science, Toho University Graduate School of Science, Funabashi, Japan
| | - Nobuyuki Hiruta
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan; Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan
| | - Wolfgang J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center, Sakura, Japan.
| |
Collapse
|