1
|
Hamilton M, Mars Z, Sedeuil M, Rolland M, Jean D, Boudreau F, Giroux V. ASCL2 is a key regulator of the proliferation-differentiation equilibrium in the esophageal epithelium. Biol Open 2024; 13:bio059919. [PMID: 38252116 PMCID: PMC10836648 DOI: 10.1242/bio.059919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/25/2023] [Indexed: 01/23/2024] Open
Abstract
The esophagus is protected from the hostile environment by a stratified epithelium, which renews rapidly. Homeostasis of this epithelium is ensured by a rare population of stem cells in the basal layer: Keratin 15+ (Krt15+) cells. However, little is known about the molecular mechanisms regulating their distinct features, namely self-renewal, potency and epithelial regeneration. Achaete-scute family BHLH transcription factor 2 (ASCL2) is strongly upregulated in Krt15+ stem cells and is known to contribute to stem cell maintenance in other tissues. Herein, we investigated the role of ASCL2 in maintaining homeostasis under normal and stress conditions in the esophageal epithelium. ASCL2 overexpression severely dysregulated cell differentiation and cell fate. Proliferation was also reduced due potentially to a blockage in the G1 phase of the cell cycle or an induction of quiescence. Mass spectrometry analysis confirmed alterations in several proteins associated with differentiation and the cell cycle. In addition, overexpression of ASCL2 enhanced resistance to radiation and chemotherapeutic drugs. Overall, these results denote the role of ASCL2 as a key regulator of the proliferation-differentiation equilibrium in the esophageal epithelium.
Collapse
Affiliation(s)
- Maude Hamilton
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Zoéline Mars
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
- Université Paris Cité, Magistère Européen de génétique, Paris 75006, France
| | - Molly Sedeuil
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Marjorie Rolland
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Dominique Jean
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Véronique Giroux
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| |
Collapse
|
2
|
Creff J, Nowosad A, Prel A, Pizzoccaro A, Aguirrebengoa M, Duquesnes N, Callot C, Jungas T, Dozier C, Besson A. p57 Kip2 acts as a transcriptional corepressor to regulate intestinal stem cell fate and proliferation. Cell Rep 2023; 42:112659. [PMID: 37327110 DOI: 10.1016/j.celrep.2023.112659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/01/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023] Open
Abstract
p57Kip2 is a cyclin/CDK inhibitor and a negative regulator of cell proliferation. Here, we report that p57 regulates intestinal stem cell (ISC) fate and proliferation in a CDK-independent manner during intestinal development. In the absence of p57, intestinal crypts exhibit an increased proliferation and an amplification of transit-amplifying cells and of Hopx+ ISCs, which are no longer quiescent, while Lgr5+ ISCs are unaffected. RNA sequencing (RNA-seq) analyses of Hopx+ ISCs show major gene expression changes in the absence of p57. We found that p57 binds to and inhibits the activity of Ascl2, a transcription factor critical for ISC specification and maintenance, by participating in the recruitment of a corepressor complex to Ascl2 target gene promoters. Thus, our data suggest that, during intestinal development, p57 plays a key role in maintaining Hopx+ ISC quiescence and repressing the ISC phenotype outside of the crypt bottom by inhibiting the transcription factor Ascl2 in a CDK-independent manner.
Collapse
Affiliation(s)
- Justine Creff
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Ada Nowosad
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anne Prel
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anne Pizzoccaro
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marion Aguirrebengoa
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Nicolas Duquesnes
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Caroline Callot
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Christine Dozier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France.
| |
Collapse
|
3
|
Kaida T, Fujiyama Y, Soeno T, Yokota M, Nakamoto S, Goto T, Watanabe A, Okuno K, Nie Y, Fujino S, Yokota K, Harada H, Tanaka Y, Tanaka T, Yokoi K, Kojo K, Miura H, Yamanashi T, Sato T, Sasaki J, Sangai T, Hiki N, Kumamoto Y, Naitoh T, Yamashita K. Less demand on stem cell marker-positive cancer cells may characterize metastasis of colon cancer. PLoS One 2023; 18:e0277395. [PMID: 37098074 PMCID: PMC10128954 DOI: 10.1371/journal.pone.0277395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/26/2022] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND CD44 and CD133 are stem cell markers in colorectal cancer (CRC). CD44 has distinctive isoforms with different oncological properties like total CD44 (CD44T) and variant CD44 (CD44V). Clinical significance of such markers remains elusive. METHODS Sixty colon cancer were examined for CD44T/CD44V and CD133 at mRNA level in a quantitative PCR, and clarified for their association with clinicopathological factors. RESULTS (1) Both CD44T and CD44V showed higher expression in primary colon tumors than in non-cancerous mucosas (p<0.0001), while CD133 was expressed even in non-cancerous mucosa and rather decreased in the tumors (p = 0.048). (2) CD44V expression was significantly associated with CD44T expression (R = 0.62, p<0.0001), while they were not correlated to CD133 at all in the primary tumors. (3) CD44V/CD44T expressions were significantly higher in right colon cancer than in left colon cancer (p = 0.035/p = 0.012, respectively), while CD133 expression were not (p = 0.20). (4) In primary tumors, unexpectedly, CD44V/CD44T/CD133 mRNA expressions were not correlated with aggressive phenotypes, but CD44V/CD44T rather significantly with less aggressive lymph node metastasis/distant metastasis (p = 0.040/p = 0.039, respectively). Moreover, both CD44V and CD133 expressions were significantly decreased in liver metastasis as compared to primary tumors (p = 0.0005 and p = 0.0006, respectively). CONCLUSION Our transcript expression analysis of cancer stem cell markers did not conclude that their expression could represent aggressive phenotypes of primary and metastatic tumors, and rather represented less demand on stem cell marker-positive cancer cells.
Collapse
Affiliation(s)
- Takeshi Kaida
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiki Fujiyama
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takafumi Soeno
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Mitsuo Yokota
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shuji Nakamoto
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takuya Goto
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Akiko Watanabe
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kota Okuno
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yusuke Nie
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shiori Fujino
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kazuko Yokota
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroki Harada
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoko Tanaka
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Toshimichi Tanaka
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keigo Yokoi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ken Kojo
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hirohisa Miura
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takahiro Yamanashi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeo Sato
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Jiichiro Sasaki
- Multidisciplinary Cancer Care and Treatment Center, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takafumi Sangai
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yusuke Kumamoto
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeshi Naitoh
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Division of Advanced Surgical Oncology, Research and Development Center for New Frontiers, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
4
|
Zeng C, Qi G, Shen Y, Li W, Zhu Q, Yang C, Deng J, Lu W, Liu Q, Jin J. DPEP1 promotes drug resistance in colon cancer cells by forming a positive feedback loop with ASCL2. Cancer Med 2022; 12:412-424. [PMID: 35670012 PMCID: PMC9844606 DOI: 10.1002/cam4.4926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Drug resistance is an important factor affecting the efficacy of chemotherapy in patients with colon cancer. However, clinical markers for diagnosing drug resistance of tumor cells are not only a few in number, but also low in specificity, and the mechanism of action of tumor cell drug resistance remains unclear. METHODS Dipeptidase 1 (DPEP1) expression was analyzed using the cancer genome atlas (TCGA) and genotype-Tissue Expression pan-cancer data. Survival analysis was performed using the survival package in R software to assess the prognostic value of DPEP1 expression in colon cancer. Correlation and Venn analyses were adopted to identify key genes. Immunohistochemistry, western blot, qRT-PCR, Co-immunoprecipitation, and dual-luciferase reporter experiments were carried out to explore the underlying associations between DPEP1 and Achaete scute-like 2 (ASCL2). MTT assays were used to evaluate the role of DPEP1 and ASCL2 in colon cancer drug resistance. RESULTS DPEP1 was highly expressed in colon cancer tissues. DPEP1 expression correlated negatively with disease-specific survival but not with overall survival. Bioinformatics analysis and experiments showed that the expressions of DPEP1 and ASCL2 in colon cancer tissues were markedly positively correlated. Mechanistic research indicated that DPEP1 enhanced the stability of protein ASCL2 by inhibiting its ubiquitination-mediated degradation. In turn, ASCL2 functioned as a transcription factor to activate the transcriptional activity of the DPEP1 gene and boost its expression. Furthermore, DPEP1 also could enhance the expression of colon cancer stem cell markers (LGR5, CD133, and CD44), which strengthened the tolerance of colon cancer cells to chemotherapy drugs. CONCLUSIONS Our findings reveal that the DPEP1 enhances the stemness of tumor cells by forming a positive feedback loop with ASCL2 to improve resistance to chemotherapy drugs.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina
| | - Guoping Qi
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina
| | - Ying Shen
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Wenjing Li
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Qi Zhu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Chunxia Yang
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Jianzhong Deng
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Wenbin Lu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Qian Liu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Jianhua Jin
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| |
Collapse
|
5
|
Oncogenic tetraspanins: Implications for metastasis, drug resistance, cancer stem cell maintenance and diagnosis of leading cancers in females. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Expression of Tspan8 in Patients with Intrahepatic Cholangiocarcinoma and Its Relationship with Clinicopathological Features and Prognosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7475938. [PMID: 34721643 PMCID: PMC8553440 DOI: 10.1155/2021/7475938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
The incidence and mortality of intrahepatic cholangiocarcinoma (ICC) are increasing worldwide. High invasion and metastasis are one of the main causes of death in patients. The selection of reasonable and effective molecular markers to evaluate the prognosis of patients with ICC has important clinical guiding significance. In this study, the expression of Tspan protein in ICC and normal tissues was compared, the correlation between Tspan expression and pathological features of patients was analyzed by the logistic regression model using multivariate analysis, and the relationship between Tspan8 expression and prognosis of ICC patients was analyzed by the Kaplan-Meier survival curve. The results showed that Tspan8 is highly positive in ICC tissues, TNM stage, degree of tumor differentiation, lymph node metastasis, and Tspan8 protein expression were independently correlated, and the overexpression of Tspan was associated with the prognosis of ICC invasion and metastasis. This provides a new idea for clinical treatment.
Collapse
|
7
|
Wang H, Ye T, Cai Y, Chen W, Xie H, Ke C. Downregulation of Ascl2 promotes cell apoptosis by enhancing autophagy in colorectal cancer cells. J Gastrointest Oncol 2021; 12:630-638. [PMID: 34012655 DOI: 10.21037/jgo-21-183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Colorectal cancer (CRC) is the third most common cancer, according to recently published literature. While the incidence and the mortality of CRC has decreased due to effective cancer screening measures, there has been an increase in the number of young patients diagnosed with colon cancer due to unclear reasons. As a target molecule of the Wnt signaling pathway, Ascl2 is an important marker of CRC stem cells and plays an important role in maintaining the nature of colon cancer stem/precursor cells. However, the role of Ascl2 in autophagy in CRC cells is rarely elucidated. Methods In this study, we found that Ascl2 was increased in CRC compared with adjacent tissue. Downregulation of Ascl2 in CRC cells could suppress proliferation and invasion, and induce apoptosis, of CRC cells. Moreover, we found that autophagy-relative protein LC3 increased after Ascl2 knockdown. Furthermore, we treated CRC cells with autophagy inhibitors 3-MA (3-Methyladenine) and CQ (Chloroquine). Results The results showed that autophagy inhibitors could prevent apoptosis, which was induced by Ascl2 knockdown. Finally, we confirmed that the downregulation of Ascl2 in CRC cells could alleviate the pathological process in vivo by xenograft experiment. Conclusions Our findings indicated that si-Ascl2 (small/short interfering) exerted a tumor suppression function in CRC by inducing autophagic cell death, and suggest that Ascl2 targeted therapy represents a novel strategy for CRC treatment.
Collapse
Affiliation(s)
- Huipeng Wang
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Tao Ye
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yuankun Cai
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wenjie Chen
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Hongwei Xie
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Chongwei Ke
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Zhan Z, Zhong L, Feng M, Guo Y. A Positive Tetraspanin 8 (TSPAN8)/β-Catenin Regulatory Loop Enhances the Stemness of Colorectal Cancer Cells. Med Sci Monit 2019; 25:9594-9601. [PMID: 31838484 PMCID: PMC6929559 DOI: 10.12659/msm.919749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The expression of TSPAN8 (tetraspanin 8) is upregulated in colorectal cancer; however, its roles in colorectal cancer progression are never been revealed. This work aimed to investigate TSPAN8 effects and the molecular basis in regulating colorectal cancer stemness. MATERIAL AND METHODS Real-time quantitative polymerase chain reaction and western blot analysis were used to detect the expression of TSPAN8 expression in clinical samples and the expression of stemness genes in colorectal cancer cells. Sphere forming analysis was performed to detect TSPAN8 effects on sphere forming ability of colorectal cancer cells. Co-IP and ChIP analysis were performed to confirm the molecular basis contributing to TSPAN8-mediated effects on colorectal cancer stemness. RESULTS TSPAN8 expression is increased in colorectal cancer tissues. Knockdown of TSPAN8 reduced the expression of stemness genes and sphere forming capacity in colorectal cancer cells. Mechanistically, TSPAN8 directly interacted ß-catenin and enhanced its protein expression, which is necessary for TSPAN8-mediated effects on colorectal cancer stemness. Conversely, ß-catenin directly bound to TSPAN8 promoter and enhanced TSPAN8 transcription. CONCLUSIONS TSPAN8 promotes colorectal cancer stemness through a positive TSPAN8/ß-catenin regulatory loop.
Collapse
Affiliation(s)
- Zhengyu Zhan
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Luxing Zhong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Miao Feng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yuling Guo
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
9
|
Yokota K, Tanaka Y, Harada H, Kaida T, Nakamoto S, Soeno T, Fujiyama Y, Yokota M, Kojo K, Miura H, Yamanashi T, Sato T, Nakamura T, Watanabe M, Yamashita K. WiNTRLINC1/ASCL2/c-Myc Axis Characteristics of Colon Cancer with Differentiated Histology at Young Onset and Essential for Cell Viability. Ann Surg Oncol 2019; 26:4826-4834. [DOI: 10.1245/s10434-019-07780-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 12/20/2022]
|
10
|
Ooizumi Y, Kojima K, Igarashi K, Tanaka Y, Harada H, Yokota K, Kaida T, Ishii S, Tanaka T, Yokoi K, Nishizawa N, Washio M, Ushiku H, Katoh H, Kosaka Y, Mieno H, Hosoda K, Watanabe M, Katada C, Hiki N, Yamashita K. Comprehensive Exploration to Identify Predictive DNA Markers of ΔNp63/SOX2 in Drug Resistance in Human Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2019; 26:4814-4825. [PMID: 31529309 DOI: 10.1245/s10434-019-07795-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND OBP-801 is a novel histone deacetylase inhibitor being developed as an anticancer drug. In this study, we explored genes to predict drug resistance in human cancer. METHODS OBP-801 resistance was assessed in 37 strains of human cancer cell lines. Expression microarrays harboring 54,675 genes were used to focus on candidate genes, which were validated for both functional and clinical relevance in esophageal squamous cell carcinoma (ESCC). RESULTS OBP-801 is sensitive to esophageal, gastric, and thyroid cancer, and resistant to some esophageal and colorectal cancers. We therefore used ESCC to explore genes. Comprehensive exploration focused on ΔNp63/SOX2, which were both genetically and epigenetically overexpressed in ESCC. Genomic amplifications of ΔNp63/SOX2 were tightly correlated each other (r = 0.81). Importantly, genomic amplification of ΔNp63/SOX2 in the resected tumors after neoadjuvant chemotherapy was significantly associated with histological grade of response (G1). Forced expression of either of these two genes did not induce each other, suggesting that their functional relevances were independent and showed robust drug resistance in OBP-801, as well as 5-fluorouracil. Furthermore, ΔNp63 could exert a potent oncogenic potential. RNA interference of ΔNp63 supported its oncological properties, as well as drug resistance. CONCLUSION Comprehensive exploration of genes involved in anticancer drug residence could identify critical oncogenes of ΔNp63/SOX2 that would predict chemotherapy response in ESCC.
Collapse
Affiliation(s)
- Yosuke Ooizumi
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keita Kojima
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kazuharu Igarashi
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoko Tanaka
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroki Harada
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kazuko Yokota
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeshi Kaida
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Satoru Ishii
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Toshimichi Tanaka
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keigo Yokoi
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Nobuyuki Nishizawa
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Marie Washio
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hideki Ushiku
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroshi Katoh
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshimasa Kosaka
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroaki Mieno
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kei Hosoda
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Chikatoshi Katada
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Naoki Hiki
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan. .,Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
11
|
Tanaka T, Yamashita K. ASO Author Reflections: ASCL2, a Marker of Dynamic Colon Stem Cell, Involved in Wnt Pathway Activation Reflects Anti-cancer Drug Resistance in Primary Colorectal Cancer. Ann Surg Oncol 2019; 26:634. [PMID: 31197519 DOI: 10.1245/s10434-019-07469-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Toshimichi Tanaka
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keishi Yamashita
- Epigenetic Treatment Research Group, Chiyoda-ku, Tokyo, Japan. .,Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| |
Collapse
|