1
|
Fernández-Domínguez IJ, Pérez-Cárdenas E, Taja-Chayeb L, Wegman-Ostrosky T, Caro-Sánchez CHS, Zentella-Dehesa A, Dueñas-González A, López-Basabe H, Morales-Bárcenas R, Trejo-Becerril C. Increased amounts of cell-free DNA released from a culture with a high content of cancer stem cells. Front Cell Dev Biol 2025; 13:1499936. [PMID: 40226589 PMCID: PMC11985834 DOI: 10.3389/fcell.2025.1499936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Background The study and characterization of cell-free DNA (cfDNA) has gained significant importance due to its clinical applications as a diagnostic and prognostic marker. However, it remains unclear whether all cell populations within a tumor or culture contribute equally to its release. This pioneering research analyzes the contribution of cancer stem cells (CSCs) in colon cancer cell lines to the amount of cfDNA released and its role in cellular transformation. Methods The CSC population derived from the SW480 colon cancer cell line was enriched using a non-adhesive culture system to assess the quantity and electrophoretic profile of the released cfDNA. Subsequently, in vitro transformation assays were conducted to compare the transforming capacity of the cfDNA obtained from enriched cultures with that from non-enriched cultures. Group differences were analyzed using analysis of variance (ANOVA), followed by post hoc interpretation with Tukey's test. Results Our study revealed that cultures with CSCs released greater amounts of cfDNA, displaying a distinct fragment profile. Additionally, cfDNA from different cellular origins influenced the transformation characteristics of NIH3T3 cells. This is the first demonstration of a link between CSC proportions and cfDNA release, suggesting that CSCs and microenvironmental conditions can affect cfDNA quantity and its potential to induce transformation. Conclusion These findings highlight the importance of cfDNA in carcinogenesis and its potential as a biomarker and therapeutic target, especially given the role of CSCs in drug resistance and tumor aggressiveness.
Collapse
Affiliation(s)
- Ileana J. Fernández-Domínguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, México City, Mexico
| | - Enrique Pérez-Cárdenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | - Lucia Taja-Chayeb
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | | | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), México City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, Mexico
| | - Alfonso Dueñas-González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| | - Horacio López-Basabe
- Departamento de Gastroenterología del Instituto Nacional de Cancerología, México City, Mexico
| | - Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| | - Catalina Trejo-Becerril
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, México City, Mexico
| |
Collapse
|
2
|
Wang X, Yang M, Zhu J, Zhou Y, Li G. Role of exosomal non‑coding RNAs in ovarian cancer (Review). Int J Mol Med 2024; 54:87. [PMID: 39129308 DOI: 10.3892/ijmm.2024.5411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Ovarian cancer (OC) is a common gynecological disease with a high mortality rate worldwide due to its insidious nature and undetectability at an early stage. The standard treatment, combining platinum‑based chemotherapy with cytoreductive surgery, has suboptimal results. Therefore, early diagnosis of OC is crucial. All cell types secrete extracellular vesicles, particularly exosomes. Exosomes, which contain lipids, proteins, DNA and non‑coding RNAs (ncRNAs), are novel methods of intercellular communication that participate in tumor development and progression. ncRNAs are categorized by size into long ncRNAs (lncRNAs) and small ncRNAs (sncRNAs). sncRNAs further include transfer RNAs, small nucleolar RNAs, PIWI‑interacting RNAs and microRNAs (miRNAs). miRNAs inhibit protein translation and promote messenger RNA (mRNA) cleavage to suppress gene expression. By sponging downstream miRNAs, lncRNAs and circular RNAs can regulate target gene expression, thereby weakening the interactions between miRNAs and mRNAs. Exosomes and exosomal ncRNAs, commonly present in human biological fluids, are promising biomarkers for OC. The present article aimed to review the potential role of exosomal ncRNAs in the diagnosis and prognosis of OC by summarizing the characteristics, processes, roles and isolation methods of exosomes and exosomal ncRNAs.
Collapse
Affiliation(s)
- Xinchen Wang
- Department of Obstetrics and Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, P.R. China
| | - Miao Yang
- Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jiamei Zhu
- Department of Obstetrics and Gynecology, Jingjiang People's Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Yu Zhou
- Oriental Fortune Capital Post‑Doctoral Innovation Center, Shenzhen, Guangdong 518040, P.R. China
| | - Gencui Li
- Department of Obstetrics and Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
3
|
Mo S, Dai W, Wang H, Lan X, Ma C, Su Z, Xiang W, Han L, Luo W, Zhang L, Wang R, Zhang Y, Zhang W, Yang L, Lu R, Guo L, Zheng Y, Huang M, Xu Y, Liang L, Cai S, Cai G. Early detection and prognosis prediction for colorectal cancer by circulating tumour DNA methylation haplotypes: A multicentre cohort study. EClinicalMedicine 2023; 55:101717. [PMID: 36386039 PMCID: PMC9646872 DOI: 10.1016/j.eclinm.2022.101717] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Early detection and prognosis prediction of colorectal cancer (CRC) can significantly reduce CRC-related mortality. Recently, circulating tumour DNA (ctDNA) methylation has shown good application foreground in the early detection and prognosis prediction of multiple tumours. METHODS This multicentre cohort study evaluated ctDNA methylation haplotype patterns based on archived plasma samples (collected between 2010 and 2018) from 1138 individuals at two medical centres: Fudan University Shanghai Cancer Center (Shanghai, China) and Southern Medical University Nanfang Hospital (Guangzhou, Guangdong, China), including 366 healthy individuals, 182 patients with advanced adenoma (AA), and 590 patients with CRC. Samples were processed using the ColonES assay, a targeted bisulfite sequencing method that detects ctDNA methylation haplotype patterns in 191 genomic regions. Among these 1138 samples, 748 were used to develop a classification model, and 390 served as a blinded cohort for independent validation. The study is registered at https://register.clinicaltrials.gov with the unique identifier NCT03737591. RESULTS The model obtained from unblinded samples discriminated patients with CRC or AA from normal controls with high accuracy. In the blinded validation set, the ColonES assay achieved sensitivity values of 79.0% (95% confidence interval (CI), 66%-88%) in AA patients and 86.6% (95% CI, 81%-91%) in CRC patients with a specificity of 88.1% (95% CI, 81%-93%) in healthy individuals. The model area under the curve (AUC) for the blinded validation set was 0.903 for AA samples and 0.937 for CRC samples. Additionally, the prognosis of patients with high preoperative ctDNA methylation levels was worse than that of patients with low ctDNA methylation levels (p = 0.001 for relapse-free survival and p = 0.004 for overall survival). INTERPRETATION We successfully developed and validated an accurate, noninvasive detection method based on ctDNA methylation haplotype patterns that may enable early detection and prognosis prediction for CRC. FUNDING The Grant of National Natural Science Foundation of China (No.81871958), National Natural Science Foundation of China (No. 82203215), Shanghai Science and Technology Committee (No. 19140902100), Scientific Research Fund of Fudan University (No.IDF159052), Shanghai Municipal Health Commission (SHWJRS 2021-99), and Shanghai Sailing Program (22YF1408800).
Collapse
Affiliation(s)
- Shaobo Mo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weixing Dai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Wang
- Singlera Genomics (Shanghai) Ltd, Shanghai, China
| | - Xiaoliang Lan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Zhixi Su
- Singlera Genomics (Shanghai) Ltd, Shanghai, China
| | - Wenqiang Xiang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyu Han
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenqin Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Long Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Renjie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yaodong Zhang
- Department of Intensive Care Unit, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenming Zhang
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lin Yang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ying Zheng
- Department of Cancer Prevention, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Corresponding author. Department of Colorectal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
- Corresponding author. Department of Pathology, Nanfang Hospital, Southern Medical University; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China.
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Corresponding author. Department of Colorectal Surgery, Fudan University Shanghai Cancer Center; Department of Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Corresponding author. Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Yin A, van Hasselt JGC, Guchelaar HJ, Friberg LE, Moes DJAR. Anti-cancer treatment schedule optimization based on tumor dynamics modelling incorporating evolving resistance. Sci Rep 2022; 12:4206. [PMID: 35273301 PMCID: PMC8913638 DOI: 10.1038/s41598-022-08012-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/17/2022] [Indexed: 12/18/2022] Open
Abstract
Quantitative characterization of evolving tumor resistance under targeted treatment could help identify novel treatment schedules, which may improve the outcome of anti-cancer treatment. In this study, a mathematical model which considers various clonal populations and evolving treatment resistance was developed. With parameter values fitted to the data or informed by literature data, the model could capture previously reported tumor burden dynamics and mutant KRAS levels in circulating tumor DNA (ctDNA) of patients with metastatic colorectal cancer treated with panitumumab. Treatment schedules, including a continuous schedule, intermittent schedules incorporating treatment holidays, and adaptive schedules guided by ctDNA measurements were evaluated using simulations. Compared with the continuous regimen, the simulated intermittent regimen which consisted of 8-week treatment and 4-week suspension prolonged median progression-free survival (PFS) of the simulated population from 36 to 44 weeks. The median time period in which the tumor size stayed below the baseline level (TTS<TS0) was prolonged from 52 to 60 weeks. Extending the treatment holiday resulted in inferior outcomes. The simulated adaptive regimens showed to further prolong median PFS to 56–64 weeks and TTS<TS0 to 114–132 weeks under different treatment designs. A prospective clinical study is required to validate the results and to confirm the added value of the suggested schedules.
Collapse
Affiliation(s)
- Anyue Yin
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Leiden Network for Personalized Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan G C van Hasselt
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Leiden Network for Personalized Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands. .,Leiden Network for Personalized Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
5
|
Chen S, Liu T, Bu D, Zhu J, Wang X, Pan Y, Liu Y, Lu ZJ, Wang P. Methylome profiling identifies TCHH methylation in CfDNA as a noninvasive marker of liver metastasis in colorectal cancer. FASEB J 2021; 35:e21720. [PMID: 34110642 DOI: 10.1096/fj.202100266r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/11/2022]
Abstract
Methylation of circulating free DNA (CfDNA) has emerged as an efficient marker of tumor screening and prognostics. However, no efficient methylation marker has been developed for monitoring liver metastasis (LM) in colorectal cancer (CRC). Utilizing methylome profiling and bisulfite sequencing polymerase chain reaction of paired primary and LM sites, significantly increased methylation of TCHH was identified in the process of LM in CRC in the present study. Methylight analysis of TCHH methylation in CfDNA displayed a promisingly discriminative power between CRC with and without LM. Besides, significant coefficient of TCHH methylation and LM tumor volume was also validated. Together, these results indicated the potential of TCHH methylation in CfDNA as a monitoring marker of LM in CRC.
Collapse
Affiliation(s)
- Shanwen Chen
- Division of General Surgery, Peking University First Hospital, Beijing, China
| | - Tao Liu
- Division of General Surgery, Peking University First Hospital, Beijing, China
| | - Dingfang Bu
- Central laboratory, Peking University First Hospital, Beijing, China
| | - Jing Zhu
- Division of General Surgery, Peking University First Hospital, Beijing, China
| | - Xin Wang
- Division of General Surgery, Peking University First Hospital, Beijing, China
| | - Yisheng Pan
- Division of General Surgery, Peking University First Hospital, Beijing, China
| | - Yucun Liu
- Division of General Surgery, Peking University First Hospital, Beijing, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Pengyuan Wang
- Division of General Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|