1
|
Yang P, Shen G, Zhang H, Zhang C, Li J, Zhao F, Li Z, Liu Z, Wang M, Zhao J, Zhao Y. Incidence of thyroid dysfunction caused by immune checkpoint inhibitors combined with chemotherapy: A systematic review and meta-analysis. Int Immunopharmacol 2024; 133:111961. [PMID: 38608442 DOI: 10.1016/j.intimp.2024.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND The combination of immune checkpoint inhibitors (ICIs) and chemotherapy as a first-line treatment for triple-negative breast cancer (TNBC) has been associated with many adverse reactions. Thyroid dysfunction, the most common adverse reaction of the endocrine system, has also attracted significant attention. This study aimed to analyse the effect of ICIs combined with chemotherapy on thyroid function in patients with TNBC. METHODS As of November 4, 2023, we searched the PubMed, Web of Science, and Cochrane Library databases for clinical trials of ICIs combined with chemotherapy for the treatment of TNBC. The incidence of hypothyroidism and hyperthyroidism was calculated using a random-effects model. RESULTS In the final analysis, 3,226 patients from 19 studies were included. The total incidence of all-grade hypothyroidism induced by the combination of ICIs and chemotherapy in treating TNBC (12% (95% confidence intervals(CI): 0.10-0.15)) was higher than that of hyperthyroidism (5% (95% CI: 0.04-0.06)). Pembrolizumab combined with chemotherapy caused the highest incidence of all grades of hypothyroidism for 13% (95% CI: 0.05-0.06). Durvalumab combined with chemotherapy caused the highest incidence of all grades of hyperthyroidism, at 7% (95% CI: 0.03-0.11). ICIs combined with chemotherapy caused a higher incidence of all grades of hypothyroidism in advanced TNBC (15% (95% CI: 0.13-0.17)) than in early stage TNBC (10% (95% CI: 0.07-0.13)). CONCLUSION In TNBC, the incidence of hypothyroidism caused by the combination of ICIs and chemotherapy was significantly higher than that caused by hyperthyroidism. Pembrolizumab combined with chemotherapy resulted in the highest incidence of hypothyroidism. The incidence of hypothyroidism in patients with advanced TNBC was significantly higher than that in patients with early stage TNBC. In addition, ICIs combined with chemotherapy resulted in 16 out of 3,226 patients experiencing grade ≥ 3 thyroid dysfunction. Although the incidence of severe thyroid dysfunction is low, it requires attention. PROSPERO CRD42023477933.
Collapse
Affiliation(s)
- Ping Yang
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Guoshuang Shen
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Hengheng Zhang
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Chengrong Zhang
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Jinming Li
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Fuxing Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Zitao Li
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Zhen Liu
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Miaozhou Wang
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Jiuda Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Yi Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| |
Collapse
|
2
|
Seager RJ, Ko H, Pabla S, Senosain MF, Kalinski P, Van Roey E, Gao S, Strickland KC, Previs RA, Nesline MK, Hastings S, Zhang S, Conroy JM, Jensen TJ, Eisenberg M, Caveney B, Severson EA, Ramkissoon S, Gandhi S. Immunologic Factors Associated with Differential Response to Neoadjuvant Chemoimmunotherapy in Triple-Negative Breast Cancer. J Pers Med 2024; 14:481. [PMID: 38793063 PMCID: PMC11122407 DOI: 10.3390/jpm14050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Background: KEYNOTE-522 resulted in FDA approval of the immune checkpoint inhibitor pembrolizumab in combination with neoadjuvant chemotherapy for patients with early-stage, high-risk, triple-negative breast cancer (TNBC). Unfortunately, pembrolizumab is associated with several immune-related adverse events (irAEs). We aimed to identify potential tumor microenvironment (TME) biomarkers which could predict patients who may attain pathological complete response (pCR) with chemotherapy alone and be spared the use of anti-PD-1 immunotherapy. Methods: Comprehensive immune profiling, including RNA-seq gene expression assessment of 395 immune genes, was performed on matched FFPE tumor samples from 22 stage I-III TNBC patients (14 patients treated with neoadjuvant chemotherapy alone (NAC) and 8 treated with neoadjuvant chemotherapy combined with pembrolizumab (NAC+I)). Results: Differential gene expression analysis revealed that in the NAC group, IL12B and IL13 were both significantly associated with pCR. In the NAC+I group, LCK and TP63 were significantly associated with pCR. Patients in both treatment groups exhibiting pCR tended to have greater tumor inflammation than non-pCR patients. In the NAC+I group, patients with pCR tended to have greater cell proliferation and higher PD-L1 expression, while in the NAC group, patients with pCR tended to have lower cancer testis antigen expression. Additionally, the NAC+I group trended toward a lower relative dose intensity averaged across all chemotherapy drugs, suggesting that more dose reductions or treatment delays occurred in the NAC+I group than the NAC group. Conclusions: A comprehensive understanding of immunologic factors could potentially predict pCR to chemotherapy alone, enabling the avoidance of the unnecessary treatment of these patients with checkpoint inhibitors.
Collapse
Affiliation(s)
- Robert J. Seager
- Labcorp Oncology, Buffalo, NY 14263, USA; (S.P.); (M.-F.S.); (E.V.R.); (S.G.); (S.Z.); (J.M.C.)
| | - Heidi Ko
- Labcorp Oncology, Durham, NC 27710, USA; (H.K.); (K.C.S.); (R.A.P.); (M.K.N.); (S.H.); (T.J.J.); (E.A.S.); (S.R.)
| | - Sarabjot Pabla
- Labcorp Oncology, Buffalo, NY 14263, USA; (S.P.); (M.-F.S.); (E.V.R.); (S.G.); (S.Z.); (J.M.C.)
| | - Maria-Fernanda Senosain
- Labcorp Oncology, Buffalo, NY 14263, USA; (S.P.); (M.-F.S.); (E.V.R.); (S.G.); (S.Z.); (J.M.C.)
| | - Pawel Kalinski
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Erik Van Roey
- Labcorp Oncology, Buffalo, NY 14263, USA; (S.P.); (M.-F.S.); (E.V.R.); (S.G.); (S.Z.); (J.M.C.)
| | - Shuang Gao
- Labcorp Oncology, Buffalo, NY 14263, USA; (S.P.); (M.-F.S.); (E.V.R.); (S.G.); (S.Z.); (J.M.C.)
| | - Kyle C. Strickland
- Labcorp Oncology, Durham, NC 27710, USA; (H.K.); (K.C.S.); (R.A.P.); (M.K.N.); (S.H.); (T.J.J.); (E.A.S.); (S.R.)
- Department of Pathology, Duke University Medical Center, Duke Cancer Institute, Durham, NC 27710, USA
| | - Rebecca Ann Previs
- Labcorp Oncology, Durham, NC 27710, USA; (H.K.); (K.C.S.); (R.A.P.); (M.K.N.); (S.H.); (T.J.J.); (E.A.S.); (S.R.)
- Department of Obstetrics & Gynecology, Duke University Medical Center, Duke Cancer Institute, Division of Gynecologic Oncology, Durham, NC 27710, USA
| | - Mary K. Nesline
- Labcorp Oncology, Durham, NC 27710, USA; (H.K.); (K.C.S.); (R.A.P.); (M.K.N.); (S.H.); (T.J.J.); (E.A.S.); (S.R.)
| | - Stephanie Hastings
- Labcorp Oncology, Durham, NC 27710, USA; (H.K.); (K.C.S.); (R.A.P.); (M.K.N.); (S.H.); (T.J.J.); (E.A.S.); (S.R.)
| | - Shengle Zhang
- Labcorp Oncology, Buffalo, NY 14263, USA; (S.P.); (M.-F.S.); (E.V.R.); (S.G.); (S.Z.); (J.M.C.)
| | - Jeffrey M. Conroy
- Labcorp Oncology, Buffalo, NY 14263, USA; (S.P.); (M.-F.S.); (E.V.R.); (S.G.); (S.Z.); (J.M.C.)
| | - Taylor J. Jensen
- Labcorp Oncology, Durham, NC 27710, USA; (H.K.); (K.C.S.); (R.A.P.); (M.K.N.); (S.H.); (T.J.J.); (E.A.S.); (S.R.)
| | | | | | - Eric A. Severson
- Labcorp Oncology, Durham, NC 27710, USA; (H.K.); (K.C.S.); (R.A.P.); (M.K.N.); (S.H.); (T.J.J.); (E.A.S.); (S.R.)
| | - Shakti Ramkissoon
- Labcorp Oncology, Durham, NC 27710, USA; (H.K.); (K.C.S.); (R.A.P.); (M.K.N.); (S.H.); (T.J.J.); (E.A.S.); (S.R.)
- Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC 27710, USA
| | - Shipra Gandhi
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
3
|
Bai Z, Peng Y, Xia X, Li Y, Zhong Y, Chen L, Guan Q, Liu W, Zhou Y, Ma L. Inhibiting autophagy enhanced mitotic catastrophe-mediated anticancer immune responses by regulating the cGAS-STING pathway. Cancer Lett 2024; 586:216695. [PMID: 38325769 DOI: 10.1016/j.canlet.2024.216695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Given the limitations of the response rate and efficacy of immune checkpoint inhibitors (ICIs) in clinical applications, exploring new therapeutic strategies for cancer immunotherapy is necessary. We found that 5-(3,4,5-trimethoxybenzoyl)-4-methyl-2-(p-tolyl)imidazole (BZML), a microtubule-targeting agent, exhibited potent anticancer activity by inducing mitotic catastrophe in A549/Taxol and L929 cells. Nuclear membrane disruption and nuclease reduction provided favorable conditions for cGAS-STING pathway activation in cells with mitotic catastrophe. Similar results were obtained in paclitaxel-, docetaxel- and doxorubicin-induced mitotic catastrophe in various cancer cells. Notably, the surface localization of CALR and MHC-I and the release of HMGB1 were also significantly increased in cells with mitotic catastrophe, but not in apoptotic cells, suggesting that mitotic catastrophe is an immunogenic cell death. Furthermore, activated CD8+T cells enhanced the anticancer effects originating from mitotic catastrophe induced by BZML. Inhibiting the cGAS-STING pathway failed to affect BZML-induced mitotic catastrophe but could inhibit mitotic catastrophe-mediated anticancer immune effects. Interestingly, the expression of p-TBK1 first increased and then declined; however, autophagy inhibition reversed the decrease in p-TBK1 expression and enhanced mitotic catastrophe-mediated anticancer immune effects. Collectively, the inhibition of autophagy can potentiate mitotic catastrophe-mediated anticancer immune effects by regulating the cGAS-STING pathway, which explains why the anticancer immune effects induced by chemotherapeutics have not fully exerted their therapeutic efficacy in some patients and opens a new area of research in cancer immunotherapy.
Collapse
Affiliation(s)
- Zhaoshi Bai
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China.
| | - Yaling Peng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xue'er Xia
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yupeng Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yuejiao Zhong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Lingxiang Chen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yiran Zhou
- Department of General Surgery, Ruijin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
4
|
Park TS, Pusztai L. ASO Author Reflections: Immunotherapy and Breast Cancer-Spotlight on Early Stage TNBC. Ann Surg Oncol 2023:10.1245/s10434-023-13957-8. [PMID: 37474698 DOI: 10.1245/s10434-023-13957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Tristen S Park
- Section of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| | - Lajos Pusztai
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|