1
|
Zhang Q, Ma Y, Yuan X, Zeng A. Box-Behnken experimental design for optimizing process parameters in carbonate-promoted direct thiophene carboxylation reaction with carbon dioxide. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Zhang Q, Shi P, Yuan X, Ma Y, Zeng A. Direct Carboxylation of Thiophene with CO2 in the Solvent-free Carboxylate-carbonate Molten Medium: Experimental and Mechanistic Insights. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Mladentsev DY, Kuznetsova EN, Skvortsova MN, Dashkin RR. Review on Synthetic Approaches toward Rivaroxaban (Xarelto), an Anticoagulant Drug. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dmitry Y. Mladentsev
- Mendeleev Engineering Center, Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Ekaterina N. Kuznetsova
- Division of Chemistry and Technology of Organic Synthesis, Department of Chemistry and Technology of Biomedical Preparations, Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Maria N. Skvortsova
- Division of Chemistry and Technology of Organic Synthesis, Department of Chemistry and Technology of Biomedical Preparations, Mendeleev University of Chemical Technology, Moscow 125047, Russia
| | - Ratmir R. Dashkin
- Division of Chemistry and Technology of Organic Synthesis, Department of Chemistry and Technology of Biomedical Preparations, Mendeleev University of Chemical Technology, Moscow 125047, Russia
| |
Collapse
|
4
|
Shigeno M, Tohara I, Sasaki K, Nozawa-Kumada K, Kondo Y. Combined Brønsted Base-Promoted CO 2 Fixation into Benzylic C-H Bonds of Alkylarenes. Org Lett 2022; 24:4825-4830. [PMID: 35763616 DOI: 10.1021/acs.orglett.2c01986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interest in developing methods for direct CO2 fixation into readily available unfunctionalized C-H bonds in organic substances has recently surged. In contrast to the well-studied carboxylations of alkynyl C(sp)-H and aromatic C(sp2)-H bonds, carboxylation of benzylic C(sp3)-H bonds to produce 2-arylacetic acids is limited to photoirradiation reactions and continues to be a challenging issue because of the low chemical reactivity. We herein describe that a combined Brønsted base (i.e., LiO-t-Bu/CsF and LiOCEt3/CsF) achieves benzylic carboxylation of electron-deficient, -neutral, and -rich alkylarenes and enables various functionalities, including fragile ones such as bromide, alkene, alkyne, and carbonyl moieties. Dicarboxylation at the benzylic position is also established. Cs-alkoxide generated in situ acts as a reactive base, as demonstrated in experiments with independently prepared CsO-t-Bu and by 133Cs nuclear magnetic resonance studies.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Itsuki Tohara
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Keita Sasaki
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
5
|
Mechanistic Insights into Palladium(II)-Catalyzed Carboxylation of Thiophene and Carbon Dioxide. Catalysts 2022. [DOI: 10.3390/catal12060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The mechanism in palladium-catalyzed carboxylation of thiophene and CO2 is investigated using the density functional theory (DFT) calculations, including three consecutive steps of the formation of carbanion through breaking the C–H bond(s) via the palladium acetate, the elimination of acetic acid and the nucleophile attacking the weak electrophile CO2 to form C–C bond. Results show that the C–C bond is formed through taking the three-membered cyclic conformation arrangement involving the interaction of the transition metal and the CO2, and the CO2 insertion step is the rate-determining step for this entire reaction process. Aiming to precisely disclose what factor determine the origin of the activation energy barrier in this carboxylation reaction, the distortion/interaction analysis is performed along with the entire reaction coordinate.
Collapse
|
6
|
Rawat A, Dhakla S, Lama P, Pal TK. Fixation of carbon dioxide to aryl/aromatic carboxylic acids. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Carboxylate-Assisted Carboxylation of Thiophene with CO2 in the Solvent-Free Carbonate Medium. Catalysts 2022. [DOI: 10.3390/catal12040369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Direct carboxylation of thiophene with CO2 has been achieved under a relatively mild solvent-free carbonate and carboxylate medium. This base-mediated medium can cleave the very weakly acidic C–H bond without using other limiting reagents, which is one indispensable step in the carboxylation reaction. Product yield varies with different carboxylate salts, and cesium pivalate is the most suitable base additive among targeted simple carboxylate salts. Furthermore, the detailed mechanism of this carboxylation reaction is studied, which involves initial proton abstraction, rendered by carbonate and C–C bond formation, by inserting CO2. The activation energy barrier of the C–H activation step is higher than the following CO2 insertion step, whether for the formation of the mono- and/or di-carboxylate, which indicates that the C–H deprotonation induced by the base is slow and the resulting carbon-centered nucleophile reacts rapidly with CO2.
Collapse
|
8
|
You Y, Kanna W, Takano H, Hayashi H, Maeda S, Mita T. Electrochemical Dearomative Dicarboxylation of Heterocycles with Highly Negative Reduction Potentials. J Am Chem Soc 2022; 144:3685-3695. [PMID: 35189683 DOI: 10.1021/jacs.1c13032] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The dearomative dicarboxylation of stable heteroaromatics using CO2 is highly challenging but represents a very powerful method for producing synthetically useful dicarboxylic acids, which can potentially be employed as intermediates of biologically active molecules such as natural products and drug leads. However, these types of transformations are still underdeveloped, and concise methodologies with high efficiency (e.g., high yield and high selectivity for dicarboxylations) have not been reported. We herein describe a new electrochemical protocol using the CO2 radical anion (E1/2 of CO2 = -2.2 V in DMF and -2.3 V in CH3CN vs SCE) that produces unprecedented trans-oriented 2,3-dicarboxylic acids from N-Ac-, Boc-, and Ph-protected indoles that exhibit highly negative reduction potentials (-2.50 to -2.94 V). On the basis of the calculated reduction potentials, N-protected indoles with reduction potentials up to -3 V smoothly undergo the desired dicarboxylation. Other heteroaromatics, including benzofuran, benzothiophene, electron-deficient furans, thiophenes, 1,3-diphenylisobenzofuran, and N-Boc-pyrazole, also exhibit reduction potentials more positive than -3 V and served as effective substrates for such dicarboxylations. The dicarboxylated products thus obtained can be derivatized into useful synthetic intermediates for biologically active compounds in few steps. We also show how the dearomative monocarboxylation can be achieved selectively by choice of the electrolyte, solvent, and protic additive; this strategy was then applied to the synthesis of an octahydroindole-2-carboxylic acid (Oic) derivative, which is a useful proline analogue.
Collapse
Affiliation(s)
- Yong You
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Wataru Kanna
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hideaki Takano
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
9
|
Chatterjee R, Bhaumik A. Carboxylation of Alkenes and Alkynes Using CO2 as a Reagent: An Overview. CURR ORG CHEM 2022. [DOI: 10.2174/1385272825666211206090621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
CO2 fixation reactions are of paramount interest both from economical and environmental perspectives. As an abundant, non-toxic, and renewable C1 feedstock, CO2 can be
utilized for the synthesis of fuels and commodity chemicals under elevated reaction conditions. The major challenge in the CO2 utilization reactions is its chemical inertness due to
high thermodynamic stability and kinetic barrier. The carboxylation of unsaturated hydrocarbons with CO2 is an important transformation as it forms high-value reaction products having
industrial as well as medicinal importance. This mini-review is mainly focused on the recent
developments in the homogeneously and heterogeneously catalyzed carboxylation of alkenes
and alkynes by using carbon dioxide as a reagent. We have highlighted various types of carboxylation reactions of alkenes and alkynes involving different catalytic systems, which
comprise mainly C-H bond activation, hydrocarboxylation, carbocarboxylation, heterocarboxylation, and ring-closing
carboxylation, including visible-light assisted synthesis processes. The mechanistic pathways of these carboxylation
reactions have been described. Moreover, challenges and future perspectives of these carboxylation reactions are discussed.
Collapse
Affiliation(s)
- Rupak Chatterjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S C. Mullick Road, Jadavpur, Kolkata
700 032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S C. Mullick Road, Jadavpur, Kolkata
700 032, India
| |
Collapse
|
10
|
Affiliation(s)
- Mijung Lee
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-dong, Yuseong, Daejeon 34113, Republic of Korea
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Young Kyu Hwang
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-dong, Yuseong, Daejeon 34113, Republic of Korea
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jaesung Kwak
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| |
Collapse
|
11
|
Shigeno M, Kondo Y, Sasaki K, Hanasaka K, Tohara I, Nozawa-Kumada K. Combined Brønsted-Base-Mediated Direct C-H Carboxylation of Heteroarenes with CO2. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-sr(k)6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Schmalzbauer M, Svejstrup TD, Fricke F, Brandt P, Johansson MJ, Bergonzini G, König B. Redox-Neutral Photocatalytic C−H Carboxylation of Arenes and Styrenes with CO2. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Saitou T, Jin Y, Isobe K, Suga T, Takaya J, Iwasawa N. Rh‐Catalyzed Direct Carboxylation of Alkenyl C−H Bonds of Alkenylpyrazoles. Chem Asian J 2020; 15:1941-1944. [DOI: 10.1002/asia.202000476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Takanobu Saitou
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-Okayama Meguro-ku Tokyo 152-8551 Japan
| | - Yushu Jin
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-Okayama Meguro-ku Tokyo 152-8551 Japan
| | - Kotaro Isobe
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-Okayama Meguro-ku Tokyo 152-8551 Japan
| | - Takuya Suga
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-Okayama Meguro-ku Tokyo 152-8551 Japan
| | - Jun Takaya
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-Okayama Meguro-ku Tokyo 152-8551 Japan
| | - Nobuharu Iwasawa
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-Okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
14
|
Shigeno M, Hanasaka K, Sasaki K, Nozawa-Kumada K, Kondo Y. Direct Carboxylation of Electron-Rich Heteroarenes Promoted by LiO-tBu with CsF and [18]Crown-6. Chemistry 2019; 25:3235-3239. [PMID: 30637844 DOI: 10.1002/chem.201805926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/27/2018] [Indexed: 11/09/2022]
Abstract
We herein demonstrate that the combination of LiO-tBu, CsF, and [18]crown-6 efficiently promotes the direct C-H carboxylation of electron-rich heteroarenes (benzothiophene, thiophene, benzofuran, and furan derivatives). A variety of functional groups, including methyl, methoxy, halo, cyano, amide, and keto moieties, are compatible with this system. The reaction proceeds via the formation of a tert-butyl carbonate species.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kazuya Hanasaka
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Keita Sasaki
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
15
|
Hong J, Li M, Zhang J, Sun B, Mo F. C-H Bond Carboxylation with Carbon Dioxide. CHEMSUSCHEM 2019; 12:6-39. [PMID: 30381905 DOI: 10.1002/cssc.201802012] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Carbon dioxide is a nontoxic, renewable, and abundant C1 source, whereas C-H bond functionalization represents one of the most important approaches to the construction of carbon-carbon bonds and carbon-heteroatom bonds in an atom- and step-economical manner. Combining the chemical transformation of CO2 with C-H bond functionalization is of great importance in the synthesis of carboxylic acids and their derivatives. The contents of this Review are organized according to the type of C-H bond involved in carboxylation. The primary types of C-H bonds are as follows: C(sp)-H bonds of terminal alkynes, C(sp2 )-H bonds of (hetero)arenes, vinylic C(sp2 )-H bonds, the ipso-C(sp2 )-H bonds of the diazo group, aldehyde C(sp2 )-H bonds, α-C(sp3 )-H bonds of the carbonyl group, γ-C(sp3 )-H bonds of the carbonyl group, C(sp3 )-H bonds adjacent to nitrogen atoms, C(sp3 )-H bonds of o-alkyl phenyl ketones, allylic C(sp3 )-H bonds, C(sp3 )-H bonds of methane, and C(sp3 )-H bonds of halogenated aliphatic hydrocarbons. In addition, multicomponent reactions, tandem reactions, and key theoretical studies related to the carboxylation of C-H bonds are briefly summarized. Transition-metal-free, organocatalytic, electrochemical, and light-driven methods are highlighted.
Collapse
Affiliation(s)
- Junting Hong
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Man Li
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Jianning Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Beiqi Sun
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| | - Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, PR China
| |
Collapse
|
16
|
Luo J, Larrosa I. C-H Carboxylation of Aromatic Compounds through CO 2 Fixation. CHEMSUSCHEM 2017; 10:3317-3332. [PMID: 28722818 PMCID: PMC5601192 DOI: 10.1002/cssc.201701058] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/19/2017] [Indexed: 05/24/2023]
Abstract
Carbon dioxide (CO2 ) represents the most abundant and accessible carbon source on Earth. Thus the ability to transform CO2 into valuable commodity chemicals through the construction of C-C bonds is an invaluable strategy. Carboxylic acids and derivatives, the main products obtained by carboxylation of carbon nucleophiles by reaction of CO2 , have wide application in pharmaceuticals and advanced materials. Among the variety of carboxylation methods currently available, the direct carboxylation of C-H bonds with CO2 has attracted much attention owing to advantages from a step- and atom-economical point of view. In particular, the prevalence of (hetero)aromatic carboxylic acids and derivatives among biologically active compounds has led to significant interest in the development of methods for their direct carboxylation from CO2 . Herein, the latest achievements in the area of direct C-H carboxylation of (hetero)aromatic compounds with CO2 will be discussed.
Collapse
Affiliation(s)
- Junfei Luo
- School of Materials Science and Chemical EngineeringNingbo UniversityNingbo315211P.R. China
| | - Igor Larrosa
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| |
Collapse
|
17
|
Tanaka S, Watanabe K, Tanaka Y, Hattori T. EtAlCl2/2,6-Disubstituted Pyridine-Mediated Carboxylation of Alkenes with Carbon Dioxide. Org Lett 2016; 18:2576-9. [DOI: 10.1021/acs.orglett.6b00918] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shinya Tanaka
- Department of Biomolecular
Engineering, Graduate School of Engineering, Tohoku University, 6-6-11
Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kota Watanabe
- Department of Biomolecular
Engineering, Graduate School of Engineering, Tohoku University, 6-6-11
Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuuki Tanaka
- Department of Biomolecular
Engineering, Graduate School of Engineering, Tohoku University, 6-6-11
Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Tetsutaro Hattori
- Department of Biomolecular
Engineering, Graduate School of Engineering, Tohoku University, 6-6-11
Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
18
|
Nemoto K, Tanaka S, Konno M, Onozawa S, Chiba M, Tanaka Y, Sasaki Y, Okubo R, Hattori T. Me2AlCl-mediated carboxylation, ethoxycarbonylation, and carbamoylation of indoles. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Kobayashi S, Yoo WJ, V. Q. Nguyen T, Guiteras Capdevila M. Lithium tert-Butoxide-Mediated Carboxylation Reactions of Unprotected Indoles and Pyrroles with Carbon Dioxide. HETEROCYCLES 2015. [DOI: 10.3987/com-14-s(k)94] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Ueno A, Kayaki Y, Ikariya T. Heterolysis of NH-Indoles by Bifunctional Amido Complexes and Applications to Carboxylation with Carbon Dioxide. Organometallics 2014. [DOI: 10.1021/om500695a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Atsushi Ueno
- Department
of Applied Chemistry,
Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama 2-12-1-E4-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Yoshihito Kayaki
- Department
of Applied Chemistry,
Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama 2-12-1-E4-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Takao Ikariya
- Department
of Applied Chemistry,
Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama 2-12-1-E4-1, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
21
|
Yoo WJ, Capdevila MG, Du X, Kobayashi S. Base-Mediated Carboxylation of Unprotected Indole Derivatives with Carbon Dioxide. Org Lett 2012; 14:5326-9. [DOI: 10.1021/ol3025082] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Woo-Jin Yoo
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Montse Guiteras Capdevila
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Xiangwei Du
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shu̅ Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|